
www.manaraa.com

Virginia Commonwealth University Virginia Commonwealth University 

VCU Scholars Compass VCU Scholars Compass 

Theses and Dissertations Graduate School 

2012 

THE ROLE OF p62 IN OSTEOCLASTOGENESIS AND PAGET’S THE ROLE OF p62 IN OSTEOCLASTOGENESIS AND PAGET’S 

DISEASE OF BONE DISEASE OF BONE 

Tamer Hadi 
Virginia Commonwealth University 

Follow this and additional works at: https://scholarscompass.vcu.edu/etd 

 Part of the Medical Genetics Commons 

 

© The Author 

Downloaded from Downloaded from 
https://scholarscompass.vcu.edu/etd/3312 

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It 
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars 
Compass. For more information, please contact libcompass@vcu.edu. 

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F3312&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/670?utm_source=scholarscompass.vcu.edu%2Fetd%2F3312&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/3312?utm_source=scholarscompass.vcu.edu%2Fetd%2F3312&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


www.manaraa.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Tamer M. A. Hadi 2014 

All Rights Reserved   



www.manaraa.com

 

 

THE ROLE OF p62 IN OSTEOCLASTOGENESIS AND PAGET’S DISEASE OF BONE 

 

A dissertation submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy at Virginia Commonwealth University 

 
 

by 

 

Tamer Mahmoud Abdel Hadi 

Bachelor of Science, University of California, Berkeley, 1998 

Master of Science, University of California, Davis, 2007 

 

 

Director: Jolene J. Windle, Ph.D. 

Irene Shaw Grigg Distinguished Professor, Department of Molecular and Human Genetics 

Director, VCU Transgenic/Knock-out Mouse Core 

Cancer Molecular Genetics Program Co-leader, Massey Cancer Center 

 

 

 

 

 

 

 

 

 

 

 

 

Virginia Commonwealth University 

Richmond, VA 

April, 2014



www.manaraa.com

ii 
 

 

 

ACKNOWLEDGEMENTS 
 

 
 
 

I would like to begin by thanking my wife, Marwa, and children, Ismael and Maryam. Thank you 

for your patience, companionship, encouragement, and love over the past several years. I could not 

have done it without you. 

 

I also want to thank my mentor and advisor Dr. Jolene Windle. Jolene, I began my research career 

as an undergraduate in the late 1990s, worked as a technician in a research lab for three years, then 

completed a Master’s research project that took another two and a half years. I have never seen an 

advisor like you. For your mentorship, financial support, and patience over the many long months 

and years, I am truly grateful. 

 

I would also like to gratefully acknowledge and thank my dissertation committee: Dr. Straus for all 

of your help in teaching me how to optimize my Western blots and Co-IPs and insightful 

comments on preliminary drafts of this dissertation, Dr. Fawcett for patiently working with me to 

understand and interpret my microarray data, Dr. Beckman for guiding me in how I should follow 

up on this data, and Dr. Barbour for your advice in all aspects of my work and unfettered access to 

your laboratory and office, thank you. 

 

I would also like to thank my fellow members of the Windle lab: Dr. Mark Subler for teaching me 

how to do my first PCR (the right way) and for his insights, suggestions, and good company while 

commiserating about our terrible sports teams over the past several years; Greg Campbell for his 

help and friendship in and out of the lab; Christina Boykins, Jillian Stafflinger, and Pam Weller  

for their diligence in maintaining all of our mouse colonies and always making sure I had whatever 

I needed to get my research done. 

 

Scientific endeavors are growing increasingly collaborative, and my work as a member of Dr. 

Windle’s research team was no exception. I owe a special debt of gratitude to Dr. G. David 

Roodman of IUPUI for his willingness to answer my questions, and to his staff, including Judy 

Anderson, Ken Patrene, and long-time collaborator Dr. Noriyoshi Kurihara, who patiently taught



www.manaraa.com

iii 
 

 

 

me how to generate osteoclasts in vitro and contributed directly to this project by performing bone 

resorption assays for us. I would also like to gratefully acknowledge Dr. Deb Galson and her staff 

at UPMC including Drs. Benedicte Sammut and Fengming Wang, for their willingness to share 

insight, protocols, and supplies. Finally I would like to thank Dr. David Dempster at Columbia 

University, and, in particular, his collaborator Dr. Hua Zhou, who performed all of the 

histomorphometric analysis included in this research project. 

 

I would also like to gratefully acknowledge Dr. Gordon Archer, director of the MD-PhD program 

at VCU, who took a chance on me; Sandra Sorrell and Magdalena Nopova for their kindness and 

assistance in making sure that my time in the program was as smooth and stress-free as possible; 

Dr. Gail Christie for her mentorship and guidance in the MBG program, and Naty Chaimowitz, 

Julie Farnsworth, and Dr. Dan Conrad, who facilitated my access to a Flow Cytometry core of the 

highest caliber here at VCU. I would also like to thank the graduate students and post-doctoral 

researchers in the Sarkar and Fisher labs, including Tim Kegelman, Bridget Quinn, Dong Chen, 

and especially Chadia Robertson who all helped me with supplies and expertise in many 

experiments. 

 

I owe a special debt of gratitude to my colleague and friend Hoon Shim for more things than I can 

enumerate. From teaching me how to do my first Western blot years ago to patiently answering 

countless questions about homework and laboratory techniques to innumerable rides to the airport, 

Hoon has always been there for me and I am truly grateful. 

 

I would like to thank my sisters, Dina and Rania, for all of their love and support over the years.  

 

Finally, to my parents, Mahmoud and Moshira, you instilled a love of learning in me when I was 

young, nurtured it throughout my youth (maybe too long!), and inspired me to pursue my dreams 

with your hard work and dedication. I love you both very much and dedicate this PhD to you.



www.manaraa.com

iv 
 

 

 

TABLE OF CONTENTS 

 

 

 

 

Acknowledgements .............................................................................................................................. ii 

List of Tables ....................................................................................................................................... vi 

List of Figures ..................................................................................................................................... vi 

Abbreviations ....................................................................................................................................... x 

Abstract ............................................................................................................................................. xiii 

 

Chapter 

I INTRODUCTION 

1.1 Background and significance ............................................................................................. 1 

1.2 Bone remodeling and osteoclastogenesis........................................................................... 3 

1.3 Etiology of Paget’s Disease of Bone .................................................................................. 8 

1.4 SQSTM1/p62 is the gene most frequently linked to PDB .............................................. 11 

1.5 Mouse models and p62 ..................................................................................................... 15 

1.6 p62 and the NFκB signaling pathway .............................................................................. 20 

1.7 p62 and autophagy ............................................................................................................ 27 

1.8 p62, reactive oxygen species, and the oxidative stress response .................................... 29 

1.9 Summary and dissertation overview ................................................................................ 33 

 

II EFFECTS OF P62 ABLATION AND MUTATION ON BONE STRUCTURE AND 

OSTEOCLASTOGENESIS 

2.1 Introduction ....................................................................................................................... 35 

2.2 Methods ............................................................................................................................. 36 

2.3 Results ............................................................................................................................... 43 

2.4 Discussion ......................................................................................................................... 57 

 

III A GLOBAL INVESTIGATION INTO THE MECHANISMS BY WHICH P62 MEDIATES 

OSTEOCLASTOGENESIS 

3.1 Introduction ....................................................................................................................... 61 

3.2 Methods ............................................................................................................................. 67 

3.3 Results ............................................................................................................................... 86 

3.4 Discussion ....................................................................................................................... 129



www.manaraa.com

v 
 

 

 

IV VALIDATION OF MICROARRAY GENERATED HYPOTHESES 

4.1 Introduction ..................................................................................................................... 135 

4.2 Methods ........................................................................................................................... 136 

4.3 Results ............................................................................................................................. 140 

4.4 Discussion ....................................................................................................................... 158 

 

SUMMARY AND CONCLUDING REMARKS 

 ............................................................................................................................................... 162 

 

REFERENCES 

 ............................................................................................................................................... 166 

 

Appendices  

A. Inhibition of BCL6 signaling is predicted in KI cells alone ......................................... 196 

B. Activation of XBP1 signaling is predicted in KI cells alone ........................................ 197 

C. Activation of CD38 signaling is predicted in KI cells alone ......................................... 198 

D. Activation of mTOR signaling is predicted in WT and KI, but not KO, cells  ............ 199 

E. Activation of NFE2L2 signaling is predicted in WT and KI, but not KO, cells .......... 200 

F. Inhibition of EIF4E function is predicted in KO cells alone......................................... 201 

G. Inhibition of E2F1 function is predicted in KO cells alone .......................................... 202 

H. Inhibition of microRNA-124 function is predicted in KO cells alone .......................... 203 

I. Inhibition of microRNA-16-54 function is predicted in KO cells alone ...................... 204 

J. Inhibition of let-7 function is predicted in KO cells alone ............................................ 205 

 

 

VITA 

 ............................................................................................................................................... 206 

 



www.manaraa.com

vi 
 

 

 

LIST OF TABLES 
 
 

 

 

Table 1.1 Mutations in p62 associated with Paget’s disease of bone ………………………14 



www.manaraa.com

vii 
 

 

 

LIST OF FIGURES 
 
 
 

 

Figure 1.1 Clinical manifestations of Paget’s disease of bone ……………………………….2 

 

Figure 1.2 Normal and pagetic bone …………………………………………………………2  

 

Figure 1.3 Basic Multicellular Units …………………………………………………………3 

 

Figure 1.4 Osteoclast formation and activation ………………………………...……………6 

 

Figure 1.5 Signaling pathways, interaction motifs, and binding partners of p62 ……………13 

 

Figure 1.6 Putative roles of p62, TRAF6, and CYLD in osteoclast formation and  

 activation ………………………………………………………………………25 

 

Figure 1.7 The role of p62 in the oxidative stress response  …………………………………32 

 

Figure 2.1 Targeting strategies for the generation of p62 P394L knock-in and p62-/- 

 mice .…………………………………………………………………………….38 

 

Figure 2.2a Expression of p62 mRNA and protein in KO, WT and KI osteoclast 

 progenitors ………………………………………………………………………44 

 

Figure 2.2b p62 KO mice develop mature-onset obesity ………………………………………46 

 

Figure 2.3a Effect of genotype on bone histomorphometric parameters in p62 KO mice 

 and age-matched WT control mice ……...………………………………………48 

 

Figure 2.3b Effect of genotype on bone histomorphometric parameters in p62 P394L KI 

 mice and age-matched WT control mice ……………………………………….49 

 

Figure  2.4a Effect of genotype on induced osteoclastogenesis in p62 KO mice and WT 

 control mice treated with TNF or saline ……………………………………….51 

 

Figure  2.4b Effect of genotype on induced osteoclastogenesis in p62 P394L KI mice  

 and WT control mice treated with TNF or saline ……………………………..52



www.manaraa.com

viii 
 

 

 

Figure 2.5a Effect of genotype and RANKL dose on induced osteoclastogenesis in vitro …..53 

 

Figure 2.5b Quantitation of effect of genotype and RANKL dose on induced  

 osteoclastogenesis in vitro ……………………………………………………….54 

 

Figure 2.6 Effect of genotype on osteoclast formation and activity …………………………56 

 

Figure 3.1 Overview of the RANK-TRAF6-p62-NFB signaling pathway hypothesis ……63 

 

Figure 3.2 Pipeline for microarray experiment …………………………………………….70 

 

Figure 3.3a Quality control measures for control (non-RANKL-treated) data ………………74 

 

Figure 3.3b Quality control measures for RANKL-treated data ………………………………75 

 

Figure 3.4 General quality control measures ……………………………………………….77 

 

Figure 3.5 Between-array sample heat map ……………………………………………….78 

 

Figure 3.6 Signal intensity distribution of arrays  ……………………………………………79 

 

Figure 3.7 Principal component analysis and scree plot  ……………………………………89 

 

Figure 3.8 Cluster dendrogram  …………………..………………………………………….90 

 

Figure 3.9a Volcano plots illustrating gene induction in RANKL-treated cells relative  

 to control ……………………………………………………………………….92 

 

Figure 3.9b Numbers of genes induced or repressed in bone marrow derived osteoclast 

 progenitors from KO, WT and KI mice in response to RANK …………………93 

 

Figure 3.10a Fold induction of most highly up-regulated genes from KO, WT and KI  

 RANKL-treated cells …..……………………………………………………….95 

 

Figure 3.10b Heat map of select genes differentially expressed after 8 hours treatment of  

 RANKL or vehicle in microarray experiment ………………………………….96 

 

Figure 3.11a Gene annotation enrichment in RANKL-induced genes…………………………101 

 

Figure 3.11b Gene annotation enrichment in RANKL-repressed genes ………………………102 

 

Figure 3.12a Annotation enrichment of genes induced by RANKL independent of p62 

 status ……………………………………………………………………………104 

 

Figure 3.12b Annotation enrichment of genes uniquely repressed by RANKL in KO mice ….105  

 



www.manaraa.com

ix 
 

 

 

Figure 3.12c Annotation enrichment of genes uniquely induced by RANKL in KI mice …….108 

 

Figure 3.13a Upstream regulator analysis in RANKL-treated osteoclast progenitors 

 From WT, KO, and KI mice …………………………………………………….111 

 

Figure 3.13b Upstream regulator analysis of the WT gene expression set indicates 

 TNFSF11 (RANKL) is activated ……………………………………………….113 

 

Figure 3.13c Upstream regulator analysis of the KO gene expression set indicates 

 TNFSF11 (RANKL) is activated ……………………………………………….114 

 

Figure 3.13d Upstream regulator analysis of the KI gene expression set indicates 

 TNFSF11 (RANKL) is activated ………………………………………………115 

 

Figure 3.14a Upstream regulator analysis in RANKL-treated osteoclast progenitors 

 from WT, KO, and KI mice listed in descending order of predicted 

 activation ……………………………………………………………………..117 

 

Figure 3.14b Upstream regulator analysis in RANKL-treated osteoclast progenitors 

 from WT, KO, and KI mice listed in descending order of predicted 

 inhibition ……………………………………………………………………..118 

 

Figure 3.15 Overlap of upstream regulators predicted to be activated and inhibited in 

 RANKL-treated osteoclast progenitors from KO, WT, and KI mice …………..119 

 

Figure 3.16 Overlap of upstream regulators predicted to be commonly activated and 

 inhibited in RANKL-treated osteoclast progenitors from KI, WT, and KO 

 mice ……….…………………………………………………………………121 

 

Figure 3.17 Upstream regulators predicted to be commonly activated and inhibited in 

 RANKL-treated osteoclast progenitors from WT and KI mice ………………...124 

 

Figure 3.18 Upstream regulators predicted to be activated and inhibited in RANKL 

 treated osteoclast progenitors from KO mice only ……………………………..126 

 

Figure 3.19 Upstream regulators predicted to be activated and inhibited in RANKL-treated 

 osteoclast progenitors from KI mice only ………………………………………129 

 

Figure 4.1 RANK up-regulation is unaffected by p62 status ……………………………...141 

 

Figure 4.2 TRAF6 expression is unaffected by p62 status …………………………………142 

 

Figure 4.3 PDB-associated UBA-domain mutation does not alter p62 binding to TRAF6 ....143 

 

Figure 4.4 Expression levels of mediators downstream of TRAF6 in the NFB  

 pathway are not affected by p62 status …………………………………………144 



www.manaraa.com

x 
 

 

 

 

Figure 4.5 p62 is dispensable for RANKL-mediated IB degradation ……………………145 

 

Figure 4.6 p62 is dispensable for RANKL-mediated p65 (RelA) nuclear translocation …..146 

 

Figure 4.7 Quantification of DNA synthesis via BrdU incorporation in KO, WT,  

 and KI osteoclast progenitors …………………………………………………..148 

 

Figure 4.8 Quantification of cellular metabolic activity via the MTT assay in p62 KO, 

 WT, and KI osteoclast precursors ……………………………………………..150 

 

Figure 4.9a Osteoclast progenitors are M-CSF receptor+, RANK+ during early 

 osteoclast differentiation, independent of p62 status …………………………..152 

 

Figure 4.9b M-CSF receptor expression increases during early osteoclast differentiation 

 in a p62-independent manner ………………………………………………….153 

 

Figure 4.9c RANK expression increases during early osteoclast differentiation in a 

 p62-independent manner ……………………………………………………….154 

 

Figure 4.10a Quantification of total ROS produced in response to RANKL stimulation 

 In KO, WT, and KI osteoclast progenitors over immediate timepoints ………...156 

 

Figure 4.10b Quantification of total ROS produced in response to RANKL stimulation 

 In KO, WT, and KI osteoclast progenitors over extended timepoints …………157 



www.manaraa.com

xi 
 

 

 

ABBREVIATIONS 
 
 
 
 

1,25-(OH)2D3 – 1,25-dihydroxy-vitamin D3 

 

AKT – protein kinase B (Akt originally referred to a mouse strain, Ak, that develops thymomas) 

 

ANOVA – two-way analysis of variance 

 

aPKC – atypical protein kinase C  

 

BMU – basic multicellular unit 

 

C/EBPβ – CCAAT/enhancer binding protein β 

 

CDV – canine distemper virus 

 

CFU-GM – colony-forming unit - granulocyte, monocyte/macrophage 

 

CSF-1R – M-CSF receptor 

 

CTR – calcitonin receptor 

 

CYLD – cylindromatosis 

 

DAVID – Database for Annotation, Visualization and Integrated Discovery 

 

EDTA – ethylenediaminetetraacetic acid 

 

ELISA – enzyme-linked immunosorbent assay 

 

ER – endoplasmic reticulum 

 

ERK – extracellular signal-related kinase (also called MAPK) 



www.manaraa.com

xii 
 

 

 

GAPDH – glyceraldehyde 3-phosphate dehydrogenase 

 

IB – inhibitor of NFB 

 

IKK – IB kinase 

 

JNK – Jun N-terminal kinase 

 

KEAP1 – kelch-like ECH-associated protein 1 

 

KI – knock-in 

 

KO – knock-out 

 

MAPK – mitogen-activated protein kinase 

 

M-CSF – macrophage colony-stimulating factor 

 

MITF – microphthalmia-associated transcription factor 

 

MMP – matrix metalloproteinase 

 

MTT – thiazolyl blue tetrazolium blue 

 

MV – measles virus 

 

MVNP – measles virus nucleocapsid protein 

 

NFATc1 – nuclear factor of activated T-cells 

 

NFB – nuclear factor kappa-light-chain-enhancer of activated B-cells 

 

NMR – nuclear magnetic resonance 

 

NRF2 – nuclear factor (erythroid-derived 2)-like 2, also called NFE2L2 

 

OPG – osteoprotegerin 

 

PCA – principal component analysis 

 

PCR – polymerase chain reaction 

 

PDB – Paget’s disease of bone 

 

PMA – present-marginal-absent 

 



www.manaraa.com

xiii 
 

 

 

PTHrP – parathyroid hormone-related protein 

 

RANK – receptor activator of NFB 

 

RANKL – RANK ligand 

 

RER – rough endoplasmic reticulum 

 

ROS – reactive oxygen species 

 

RSV – respiratory syncytial virus 

 

RT-PCR – reverse transcriptase - polymerase chain reaction 

 

SQSTM1 – sequestosome 1 

 

TAB2 – TGF-beta activated kinase 1/MAP3K7 binding protein 2 

 

TAF12 – transcription initiation factor TFIID subunit 12 

 

TAK1 – TGF-beta activated kinase, also called MAP3K7 

 

TNF – tumor necrosis factor  

 

TRAF6 – TNF receptor-associated factor 6 

 

TRAP – tartrate resistant acid phosphatase 

 

Ub – ubiquitin 

 

UBA – ubiquitin associated 

 

UPR – unfolded protein response 



www.manaraa.com

 
 

 

 

ABSTRACT 

 

 

 

 

THE ROLE OF p62 IN OSTEOCLASTOGENESIS AND PAGET’S DISEASE OF BONE 

 

 

by Tamer M. A. Hadi, M.S., Ph.D. 

 

 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy at  

 

 

Virginia Commonwealth University, 2014 

 

 

Director: Jolene J. Windle, Ph.D. 

Irene Shaw Grigg Distinguished Professor, Department of Molecular and Human Genetics 

Director, VCU Transgenic/Knock-out Mouse Core 

Cancer Molecular Genetics Program Co-leader, Massey Cancer Center 

 

 

 

 

Paget’s disease (PDB) is the second most common metabolic bone disease after osteoporosis, 

affecting up to 3% of adults over age 55. It is characterized by focal lesions of bone resorbed by 

hyperactive osteoclasts coupled with rapid formation of highly disorganized, low quality bone 

formed by osteoblasts. Such lesions cause skeletal deformity, fractures, and other symptoms that 

significantly decrease quality of life. In 2001, mutations in the SQSTM1/p62 gene were found in a 

subset of Paget’s patients. The work summarized in this dissertation sought to answer two broad 

questions: what is the function of p62 in normal bone homeostasis and how do PDB-associated
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mutations alter it?  These studies took advantage of two mouse models: p62 knock-out (KO) mice, 

and p62P394L “knock-in” (KI) mice carrying the most common PDB-associated mutation.  

KO, KI, and wildtype (WT) controls were aged to one year for skeletal-histological 

characterization. No differences were observed in a variety of bone parameters between WT and 

KO bones, while bones from age-matched KI mice exhibited a 33% decrease in bone volume and a 

25% increase in osteoclast formation. In vivo, TNF-α caused a potent induction of 

osteoclastogenesis in calvariae of WT and KI, but not KO, mice. In vitro, RANKL induced 

osteoclast formation in a dose-dependent manner in WT and KI, but not KO, cultures. 

Gene expression profiling of RANKL-treated osteoclast progenitors from WT, KO, and KI mice 

was then performed to identify the changes in signaling pathways responsible for these effects. 

Surprisingly, gene expression patterns from all three groups were consistent with robust activation 

of NFκB signaling in RANKL-treated samples, indicating that p62 is dispensable for RANKL 

activation of NFκB. Interestingly, gene expression patterns in KO cells suggested impaired 

proliferation and response to reactive oxygen species (ROS), a finding which was confirmed in cell 

culture experiments. In contrast, KI cells displayed enrichment for genes associated with the 

unfolded protein response, consistent with p62’s role in ubiquitin-mediated protein degradation via 

proteolysis and autophagy. These studies have therefore generated several novel hypotheses 

concerning the role of p62 in both normal bone homeostasis and Paget’s disease of bone. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background and Significance: Paget’s disease of bone 

Paget’s disease is a focal metabolic bone disease that affects up to 3% of adults over the age of 60 

(Siris et al., 1990; Hamdy, 1995; Kanis, 1998). Though often asymptomatic, PDB is associated 

with significant morbidity in a substantial number of patients. Symptoms include bone pain, 

skeletal deformity (Figure 1.1), neurological complications, pathologic fractures, deafness, and 

osteosarcoma at a 1000-fold greater incidence than in the general population (Kanis, 1998; 

Meunier et al., 1980; Chapuy et al., 1982; Siris et al., 1989; Hansen et al., 1999; Roodman and 

Windle, 2005). At the tissue level, such symptoms correlate with the presence in one or more 

bones of characteristic pagetic lesions, or focal areas of highly exaggerated bone remodeling 

(Figure 1.2). It is now known that these lesions form in a stereotypical manner. Initially, PDB is 

characterized by excessive bone resorption by abnormal osteoclasts in a focal region. 

Subsequently, rapid, haphazard bone formation by increased numbers of hyperactive osteoblasts 

results in a highly disorganized mosaic of poor quality, woven bone (Roodman and Windle, 2005). 
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Figure 1.1. Clinical manifestations of Paget’s disease of bone. (A) Typical changes in the skull associated with Paget’s disease include diffuse 
enlargement, and dilated scalp veins. Involvement of the skull in PDB can lead to cranial nerve compression, optic atrophy, and nerve deafness (note 
the presence of a hearing aid). Bowing deformities can also occur in the long bones of the arm (B) and leg (C) leading to arthritic bone pain, limb 
shortening and gait abnormalities. Images from American College of Rheumatology image bank and The Paget Foundation. 
 

 

Figure 1.2. Normal and pagetic bone. (A) Radiomicrograph contrasting normal bone (left) with the sclerotic and lytic lesions characteristic of PDB 
(right). (B) Scanning electron micrograph showing intact trabecular plates and marrow spaces in healthy bone (left) and extensive pitting and loss of 
normal architecture in pagetic bone (right). Photographs from Siris ES, Canfield RE 1995 Paget’s disease of bone. In Becker KL (ed.) Principles and 
Practice of Endocrinology and Metabolism, 2

nd
 ed. © 1995 Lippincott. All rights reserved.
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1.2 Bone remodeling and osteoclastogenesis 

Over forty years ago, Harold Frost first deduced that the process of skeletal remodeling, and 

indeed, the very internal structure of bone, is created, maintained, and altered by the cells that 

populate it – osteoclasts, osteoblasts, and osteocytes – in teams of “Basic Multicellular Units” or 

BMUs (Figure 1.3; Martin et al., 1998). 

 

 

Figure 1.3. Basic Multicellular Units. Hematoxylin and eosin stained longitudinal sections of Basic 
Multicellular Units (BMUs) taken from rabbit tibial midshafts. Note the presence of several prominent nuclei 
in the labeled osteoclasts in the cutting cones. 
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Each BMU is composed of an advancing cutting cone populated by bone-resorbing, multinucleated 

osteoclasts, followed by a closing cone lined by scores of bone-forming, mononuclear osteoblasts 

(Martin et al., 1998). In the cortices of long bones, osteoclasts in the cutting cone tunnel in one 

direction, approximately aligned with the longitudinal axis of the bone, while osteoblasts lay down 

osteoid, a collagenous precursor to mineralized bone, in an orthogonal, radial direction (Martin et 

al., 1998). 

Osteoclasts are structurally and functionally anomalous in pagetic lesions 

The osteoclast plays a central role in the pathogenesis of PDB (Hosking, 1981). Under normal 

conditions, mononuclear precursor cells in the monocyte-macrophage lineage of hematopoietic 

cells fuse to form multinucleated osteoclasts (~ 3 to 20 nuclei) that are then activated to resorb 

bone in a tightly regulated progression (Figure 1.4; Takayanagi, 2008).  

In PDB, however, osteoclasts in pagetic lesions are characterized by abnormal morphology, 

exhibiting unusual cytoplasmic and nuclear inclusion bodies whose composition remains a source 

of controversy (Meunier et al., 1980; Chapuy et al., 1982; Hosking 1981; Rebel et al., 1981; Kukita 

et al., 1990). Moreover, such osteoclasts are abnormally increased in number and size and contain 

up to 100 nuclei per cell (Hosking 1981; Rebel et al., 1981). Evidence for the central role played 

by osteoclasts in PDB is provided by the finding that treatment of Paget’s patients with agents that 

block osteoclast formation and bone resorption, such as calcitonin or bisphosphonates, induces 

clinical remission (Langston and Ralston, 2004). Abnormal structure and function in PDB are, 

however, not limited to fully differentiated osteoclasts. In vitro studies of marrow cell cultures 

obtained from involved bones of PDB patients have identified several unique characteristics of 

pagetic osteoclast precursors. Compared with precursors formed in normal marrow cultures, these 
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pagetic precursors: (a) form osteoclasts much more rapidly, in far greater numbers (10 to 100 fold), 

with many more nuclei (Kukita et al., 1990), (b) express higher levels of tartrate acid resistant 

phosphatase (TRAP) (Kukita et al., 1990) and TAF12 (formerly TAFII-17), a component of the 

vitamin D receptor transcription complex (Kurihara et al., 2004), and (c) exhibit hyper-responsivity 

to osteoclastogenic stimuli such as 1,25-(OH)2D3, RANKL (receptor activator of nuclear factor-κB 

ligand), and TNF-α (Neale et al., 2002; Menaa et al., 2000; Demulder et al., 1993). 

 

Osteoclastogenesis depends upon cooperative M-CSF, RANKL and co-stimulatory signaling 

To explore these findings in greater detail, we will now take a moment to introduce the cellular 

physiology underlying basal osteoclast formation and activation (Figure 1.4). Specifically, mouse 

models of osteopetrosis (i.e. in which osteoclasts are structurally or functionally absent) have 

revealed a number of genes that are essential for osteoclastogenesis and may be broadly divided 

into those that are required for the generation of osteoclast precursors and those that are required 

for the differentiation process (reviewed in Teitelbaum and Ross, 2003; Takayanagi, 2008). The 

former include M-CSF, c-Fms, bcl-2, PU.1, and the MITF family of transcription factors. Early 

binding of M-CSF to its receptor, c-Fms, activates the proliferation, survival and cytoskeletal 

reorganization of osteoclast precursor cells and up-regulates RANK expression, which is required 

for further differentiation. PU.1 binds to the promoter of c-Fms, up-regulating its expression 

(Zhang et al., 1994), while MITF binds the promoter of anti-apoptotic Bcl-2, regulating its 

expression (McGill et al., 2002). Mice deficient in any of these genes exhibit osteopetrosis, 

increased skeletal mass due to abnormally dense bone, due to an absence of the common precursor 

for both osteoclasts and macrophages (Takayanagi, 2008). 
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Figure 1.4 Osteoclast formation and activation. Osteoclasts are formed by the fusion of hematopoietic precursors in a manner that is induced by 
M-CSF, RANKL and its co-stimulatory immunoglobulin-like receptor, and opposed by the RANKL-decoy receptor OPG. Ultimately, the mature, 
multinucleated osteoclast is activated by signals that lead to the initiation of bone remodeling. These include rearrangements of the actin cytoskeleton, 
formation of a tight junction between the bone surface and surrounding tissue, and secretion of hydrogen ion and proteolytic enzymes to resorb bone.  
 
Abbreviations: M-CSF, macrophage colony-stimulating factor; c-Fms, Colony stimulating factor 1 receptor also known as macrophage colony-
stimulating factor receptor; PU.1, Transcription factor PU.1; MITF, microphthalmia-associated transcription factor; Bcl-2, B-cell CLL/lymphoma 2; 
RANK, receptor activator of nuclear factor-κB; RANKL, RANK ligand; TRAF6, tumor necrosis factor receptor-associated factor 6; c-Fos, Proto-
oncogene c-Fos; NFκB, nuclear factor-κB; IKKβ; Inhibitor of NFκB kinase subunit beta; NFATc1, nuclear factor of activated T-cells cytoplasmic 1; 
DAP12, DNAX-activating protein; FCRγ, Fc receptor common γ subunit; DC-STAMP, dendritic cell-specific transmembrane protein; OSCAR, 
osteoclast-associated receptor; ATP6v0d2, ATPase, H+ Transporting, Lysosomal 38kDa, V0 Subunit D2; c-Src, Proto-oncogene tyrosine-protein 
kinase Src; ClC-7, chloride channel 7; ATP6i, V-proton pump, H+ transporting (vacuolar proton pump) member I; TRAP, Tartrate resistant acid 
phosphatase; OPG, osteoprotegerin. Adapted from Figure 1 in Boyle et al., 2003 and Figure 1 in Takayanagi, 2008. 
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A second group of genes that are essential for osteoclast differentiation include: RANKL, its 

receptor RANK, c-Fos, NFκB, NFATc1, DC-STAMP, OSCAR, and ATP6i, among others 

(reviewed in Teitelbaum and Ross, 2003; Takayanagi, 2008). Binding of RANKL to RANK results 

in the recruitment of TRAF6 (responsible for downstream NFκB signaling), the induction of the 

transcription factor c-Fos, and the concomitant phosphorylation of co-stimulatory ITAM in DAP12 

and FcRγ (adaptor proteins associated with critical calcium signaling in both immune cells and 

osteoclasts), committing the hematopoietic precursors to the osteoclast lineage. TRAF6-mediated 

NFκB signaling ultimately induces NFATc1, the master transcription factor for genes such as DC-

STAMP and ATP6v0d2, responsible for cell-cell fusion (Kim et al., 2008); β3 integrin, responsible 

for cytoskeletal changes and matrix-derived intracellular signaling (McHugh et al., 2000); carbonic 

anhydrase and vacuolar proton pumps, responsible for secretion of hydrogen ion that solubilizes 

hydroxyapatite or the mineral component of bone (Kim, Y et al., 2005; Yang et al., 2012); 

cathepsin K, TRAP, and matrix metalloproteinases 9 and 14, responsible for proteolytic cleavage 

of the organic component of bone (Takayanagi et al., 2002 Sundaram et al., 2007; Song et al., 

2009); and NFATc1 itself and OSCAR or osteoclast-associated receptor, responsible for calcium-

dependent auto-amplification of NFATc1 signaling (Kim, Y et al., 2005). 

 

Osteoblasts in pagetic lesions are increased in number but exhibit no structural abnormalities 

Briefly, osteoblasts and their precursors are also thought to play an important role in PDB. Pagetic 

lesions are characterized by increased numbers of both mature and immature osteoblasts 

(Roodman and Windle, 2005). While these cells exhibit no structural abnormalities akin to those in 

pagetic osteoclasts, they do display signs of increased cellular activity, including abundant rough 
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endoplasmic reticulum (RER) and well-developed Golgi, consistent with the increased bone 

formation that occurs in active pagetic lesions (Hosking, 1981). Traditionally, it has been thought 

that this increase in osteoblast number and activity reflects a response to increased osteoclast 

activity, since bone resorption and formation remain tightly coupled in PDB (Chapuy, 1982). More 

recent studies, however, suggest that osteoblasts and their precursors may also enhance the 

osteoclastogenic microenvironment in pagetic lesions intrinsically (Menaa et al., 2000; Demulder 

et al., 1993; Sun et al., 2006; Naot et al., 2007; Hiruma et al., 2008). 

 

1.3 Etiology of Paget’s Disease of Bone 

Though the cause of PDB remains the object of intensive investigation, it is generally accepted that 

both genetic and environmental factors contribute to the pathogenesis of this disease. On the one 

hand, familial clustering is observed, with up to 40% of affected patients having at least one first-

degree relative with PDB (Sofaer et al., 1983; Siris et al., 1991; Morales-Piga, 1995) and numerous 

studies have described extended families exhibiting an autosomal dominant mode of inheritance 

(Leach et al., 2001; Daroszeswska and Ralston, 2005). On the other hand, the findings that PDB  

exhibits incomplete penetrance in these families (Leach et al., 2001; Daroszeswska and Ralston, 

2005), presents in a clinically variable manner, even within families, and is highly localized to a 

particular bone or bones and not systemic in nature, all suggest the presence of some mediating 

environmental factor that acts locally in bone (Roodman and Windle, 2005). 
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Paramyxoviral infection in the etiology of PDB 

Among the best studied environmental stimuli for the manifestation of PDB is slow virus infection 

by the members of the family paramyxoviridae (Roodman and Windle, 2005; Roodman and Singer 

2012). Beginning in the early 1980s and through the next decade, several groups published 

independent accounts of unusual nuclear and cytoplasmic inclusions in giant osteoclasts (but not 

osteoblasts or osteocytes) obtained from histological sections of patients with PDB (Mirra et al., 

1981; el-Labban et al., 1984; Carles et al., 1989; Singer et al., 1993; DeChiara et al., 1998; Singer, 

1996). In parallel, a growing body of literature arose suggesting that these inclusions were viral in 

origin. In osteoclasts cultured from pagetic lesions, evidence was found for the presence of 

antigens immunologically akin to those of several viruses including measles virus (MV) (Baslé et 

al., 1979; Rebel et al., 1980), respiratory syncytial virus (RSV) (Mills et al., 1981), and canine 

distemper virus (CDV) (Gordon et al., 1991), all paramyxoviruses. In the subsequent decade, 

further support for a viral etiology was provided by the detection of viral transcripts in both 

affected (where they were enriched) and non-affected bone cells of PDB patients (Baslé et al., 

1986; Reddy, et al., 1995; Mee et al., 1998). 

Over the next decade, several additional important developments arose in Paget’s research – most 

notably, the publication of the earliest reports of genetic models of viral contributions to PDB 

pathogenesis (reviewed in Singer and Roodman, 2012). In one study, normal osteoclast precursors 

were transfected with the measles virus nucleocapsid protein (MVNP) gene and subsequently 

formed osteoclasts that were increased in number, nuclei per osteoclast, bone resorptive capacity, 

and sensitivity to 1,25-(OH)2D3 (Kurihara et al., 2000) – they key characteristics of osteoclasts 

from pagetic lesions. In a later study, nearly one-third of transgenic mice with osteoclast-targeted 

expression of MVNP developed characteristic pagetic lesions (Kurihara et al., 2006). 
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The proposition that viruses play an important role in the etiology of PDB is not, however, without 

controversy. As long ago as 1994, the absence of measles and canine distemper viral transcripts 

and paramyxoviral sequences in pagetic samples was reported  in the UK (Birch et al., 1994) and 

later confirmed by another group in New Zealand (Matthews et al., 2008). Subsequently, it was 

suggested that direct evidence of viral causality was scant, that the indirect evidence presented was 

poor because molecular targets for probes used to evince paramyxoviral infection in pagetic 

osteoclasts could have been endogenous mRNA and proteins rather than viruses, and that 

independent, double-blinded replication of the findings was sorely needed before an association or 

causal relationship between paramyxoviral infection and PDB could be asserted  (Ralston and 

Helfrich, 1999). In the subsequent year, this group published yet another negative result, finding no 

evidence for measles virus, RSV, or CDV via immunocytochemistry, in situ hybridization, and 

RT-PCR in a large sample (n = 53) of PDB patients in the UK (Helfrich et al., 2000). Interestingly, 

ultrastructural studies of pagetic osteoclasts revealed: 

intranuclear inclusion bodies, similar to those described by others previously…. The 

pagetic inclusions were straight, smooth tubular structures packed tightly in parallel 

bundles and differed from nuclear inclusions, known to represent MV nucleocapsids, in a 

patient with subacute sclerosing panencephalitis (SSPE) in which undulating, diffuse 

structures were found, arranged loosely in a nonparallel fashion. 

Finally, this group spearheaded a multi-center, blinded study aimed at detecting transcripts of 

measles or canine distemper viruses in PDB patient samples and controls via RT-PCR with 

sensitivity to 16 copies (Ralston et al., 2007). Despite including groups that had previously shown 

the presence of CDV in pagetic lesions, they were unable to detect any evidence of 

paramyxoviruses, concluding that previously published positive reports were likely due to 

laboratory cross-contamination (Ralston et al., 2007). While these studies did not end the 

controversy, they did catalyze interest in alternative etiologies for PDB – and in the intervening 
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years, a more formal appreciation for the genetic contributions to PDB began to emerge (reviewed 

in Ralston and Layfield, 2012). 

 

1.4 SQSTM1 / p62 is the gene most frequently linked to PDB 

It had already been well understood at this point that genetic factors played a role in the 

pathogenesis of PDB, for several reasons. First, up to 40% of patients report a positive family 

history with first-degree relatives affected at a frequency approximately 7 times greater in cases 

than in controls (Sofaer et al., 1983; Siris et al., 1991). Moreover, it was also well known that PDB 

exhibited an autosomal dominant mode of transmission with incomplete penetrance (Siris et al., 

1991; Morales-Pigga et al., 1995). Finally, multiple susceptibility loci had been identified and 

confirmed (Fotino et al., 1977; Cody et al., 1997; Haslam et al., 1998).  In 2001, a breakthrough 

was made. Research groups in Canada and the UK independently published reports of a strong 

susceptibility locus for PDB on chromosome 5q35 identified by genomewide linkage scans in 

affected families (Laurin et al., 2001; Hocking et al., 2001). Subsequent mutation screening in a 

critical 300kb locus therein led to the identification of a recurrent nonconservative Proline to 

Leucine change at residue 392 (P392L) flanking the ubiquitin-associated domain of the protein 

sequestosome 1 (SQSTM1/p62) that was not present in 291 control individuals in a French-

Canadian cohort (Laurin et al., 2002) – a finding confirmed later that year in a British cohort 

(Hocking et al., 2002). What made this discovery unique and important was that it was the first 

time mutation of a specific gene was uniquely associated with PDB. 
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p62 structure and function 

First cloned in 1996, p62 was identified as a p56lck binding partner (Joung et al., 1996), ubiquitin 

binding protein (Vadlamudi et al., 1996), and oxidative stress sensor (Ishii et al., 1996; Ishii et al., 

1997). It is now known that p62 is a 440 amino acid protein characterized by an abundance of 

motifs that mediate distinct interactions with binding partners in several different signaling 

pathways (Figure 1.5), most critically, those related to ubiquitin binding, autophagy, inflammation, 

and the oxidative stress response (reviewed in Chen and White, 2011; Chung and Van Hul, 2012; 

Salminen et al., 2012; Nezis and Stenmark, 2012). 

 

UBA domain mutations and PDB  

Over the course of the past decade, nearly thirty mutations (missense and truncating) in p62 have 

been identified in PDB patient populations all over the world (Table 1.1). It is now estimated that 

mutation in p62 is associated with 40 to 50% of familial cases and up to 10% of sporadic cases of 

PDB (Daroszewska and Ralston, 2005; Ralston and Layfield, 2012; Chung and Van Hul, 2012). 

Importantly, essentially all PDB-associated mutations reside in the 7
th

 and 8
th

 exons, encoding the 

UBA domain, which has been shown to possess ubiquitin binding function. 
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Figure 1.5. Signaling pathways, interaction motifs, and binding partners of p62. Starting from its N-terminus, p62 has a PB1 (Phox and Bem 1p) 
domain that is composed of a p56lck-interacting Src homology 2 domain (SH2), and an acidic interaction domain (AID) that interacts with the 
autophagy receptor neighbor of BRCA1 (NBR1), the ATPase subunit of 19S regulatory particle of 26S proteasome (Rpt1), p62 itself to facilitate 
polymerization, and several classes of kinases including the extracellular signal-regulated kinase (ERK1), atypical protein kinase Cs (aPKCs), 
mitogen-activated protein kinase kinase kinase 3 (MEKK3), and mitogen-activated protein kinase kinase 5 (MEK5). This is followed by a zinc finger 
domain (ZZ) that binds the scaffold protein RIP1 (receptor interacting serine-threonine kinase 1) that recruits aPKCs to tumor necrosis factor-(TNF)-
signaling complexes, a p38MAPK binding domain important for p38-MAPK-induced PPARα phosphorylation as well as to LIM-domain containing 
proteins. The remaining domains include a TNF receptor-associated factor 6 (TRAF6)-binding domain (TBS), which is thought to transduce TRAF6 
signaling in a variety of pathways, an LC3-interacting domain (LIR) that binds autophagic effector proteins, a KEAP1-interacting domain (KIR) that 
plays an important role in facilitating the NRF2-antioxidant response, and, ultimately, a C-terminal ubiquitin-associated domain, that binds ubiquitin, 
polyubiquitinated proteins, and organelles. Additional domains include nuclear export and localization signals (NES, NLS) that play an important role 
in nuclear-cytoplasmic shuttling of p62, and PEST domains, peptide sequences rich in proline (P), glutamate (E), serine (S), and threonine (T) that are 
putative signals for rapid proteolytic degradation. 
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Table 1.1. Mutations in p62 associated with Paget’s disease of bone. Adapted from Table 2 in Chung 
PY, Van Hul W. Paget's disease of bone: Evidence for complex pathogenetic interactions. Semin Arthritis 
Rheum. 2012 Apr;41(5):619-41. 

 

Several bio-physical studies have been undertaken to elucidate the effect of mutations in the UBA 

domain of p62 (Cavey et al., 2005; Cavey et al., 2006; Long et al., 2010; Garner et al., 2011; Isogai 

et al., 2011). Most notably, NMR relaxation dispersion experiments, isothermal titration 

calorimetry, and fluorescence kinetic measurements, have demonstrated that the p62 UBA domain 

forms a highly stable dimer, and that the dimer interface partially occludes the Ub-binding surface 

of p62, impairing the ability of p62 to bind ubiquitin (Long et al., 2010). More recently, the crystal 

structure of the UBA domain of mouse p62 and the solution structure of its ubiquitin-bound form 

Position from ATG Reported Position Protein Change

Exon 7

T1005A T1046A D335E

T1045A T1085A S349T

C1090T C1090T P364S

A1132T A1132T K378X

C1142T C1182T A381V

C1149A C1190A Y383X

C1160T C1200T P387L

G1165C G1205C A390X

C1169T C1209T A390V

IVS7+1G/A IVS7+1G/A A390X

Exon 8

1170delT 1210delT L394X

C1175T C1215T P392L

1175delC 1215delC L394X

1185/6insT 1224/5insT E396X

T1189G T1229G S397A

T1195C T1235C S399P

C1198T C1238T Q400X

A1201G A1241G M401V

A1210G A1250G M404V

T1211C - M404T

G1231A - G411S

C1237T C1277T L413F

T1250A T1290A I417q

1267insT 130insT D423X

T1271G T1311G I424S

G1273A G1313A G425R

G1274A G1312A G425E

C1280A - A427D
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have been solved (Isogai et al., 2011). Subsequent NMR analyses from this group corroborate the 

earlier finding that p62’s UBA domain exists in equilibrium between mutually exclusive 

monomeric and dimeric forms, and that ubiquitin binding shifts the equilibrium toward the active 

monomeric form (Isogai et al., 2011). Interestingly, certain PDB-associated point mutations, such 

as S399P and M404V/T, are associated with impaired UBA structural integrity and reduced dimer 

stability, while others, such G425R, have increased stabilization and dimerization, and others still, 

such as the common P392L mutation, seem to have no significant effect on either of these factors 

(Garner et al., 2011). However, all PDB-associated mutations in p62 lead to varying degrees of 

loss of ubiquitin binding capacity in the context of full-length p62 (Searle et al., 2012). 

To summarize: at least twenty-eight different mutations, all localized within the C-terminal UBA 

domain of p62, have been identified, each of which is associated with a phenotypic gain of 

function (i.e. increased osteoclast number and activity) in pagetic lesions. Bio-structural studies 

have revealed that these PDB-associated mutations have differing effects on dimer stability, but 

that all are associated with a loss of full length p62’s capacity to bind ubiquitin. 

 

1.5 Mouse models and p62 

What are the downstream effects of such mutations in the context of skeletal architecture and bone 

cell function? To answer this question we begin with a review of the relevant mouse models. As 

noted earlier, research groups in Canada and the UK independently published reports of a recurrent 

nonconservative Proline to Leucine change at residue 392 (P392L) flanking the UBA domain of 

p62 (Laurin et al., 2002; Hocking et al., 2002). Shortly thereafter, the first mouse models aimed at 

clarifying the role played by p62 in osteoclastogenesis began to emerge.  
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p62 -/- mice 

One of the earliest models generated was that in which p62 was ablated genetically. In 2004, 

Durán and colleagues observed that p62-/- mice were born in Mendelian proportions, were grossly 

normal, showed no sign of osteopetrosis (failure to form functional osteoclasts) in 6 to 8 week old 

mice, or radiological or histological abnormalities in cortical or trabecular bone. They therefore 

concluded that basal osteoclastogenesis is not affected by the loss of p62. Next they treated mice or 

bone marrow-derived progenitors with osteoclastogenic factors, such as PTHrP in vivo, or 

RANKL in vitro, and observed impaired osteoclast formation and activation in the p62-/- mice, but 

not in mice deficient for the atypical protein kinase C, ζ  (aPKCζ), to which p62 binds, as 

compared to wildtype controls (Durán et al., 2004). The authors offered a potential mechanism for 

this effect – presenting evidence that p62 binds TRAF6 and, most likely, acts at the level of IKK to 

facilitate NFκB translocation, activation, and ultimately, NFATc1 induction (Durán et al., 2004). 

Importantly, in a subsequent publication, this group demonstrated that that p62-/- mice develop 

mature-onset obesity, first statistically detectable at the age of 5 months, in addition to systemic 

glucose intolerance and insulin resistance (Rodriguez et al., 2006). They also suggested that p62-/- 

mice exhibit increased bone mineral density as they age, implying a possible osteopetrotic 

phenotype, but provided no evidence of this effect (Rodriguez et al., 2006). While at least one 

group suggests that mature-onset obesity in p62-/- mice is attributable to hyperphagia secondary to 

deficient central-leptin signaling (Harada et al., 2013), tissue specific p62-/- mouse lines have 

revealed: (a) that lack of p62 specifically in adipose tissue recapitulates the metabolic syndrome 

phenotype, (b) that impaired p62-mediated mitochondrial function in brown adipose tissue is 

responsible for this phenotype, and (c) that the likeliest mechanism for this regulation is 

diminished p38 MAPK activation and signaling (Müller et al., 2013).  
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To summarize, early evidence obtained from p62-/- mouse models demonstrates that p62 plays an 

important role in induced osteoclastogenesis and the likeliest mechanism for this effect is the 

RANK-TRAF6-NFκB signaling pathway (this pathway will be discussed in greater detail in the 

following section). Whether p62 also plays a role in basal osteoclastogenesis and the most relevant 

signaling pathways by which it might do so have not yet been firmly established, and form the 

basis for the first set of our experimental studies in chapter two. Before proceeding, however, it 

should be noted that the p62-/- mouse does not accurately model the p62 mutations seen in PDB, 

which invariably result in the production of a full-length or near full-length protein carrying 

alterations in the UBA domain, and thus the knock-out mice were not expected to model PDB 

phenotypically. 

 

Mouse models of PDB 

To create a genetically accurate model of PDB, two groups have generated knock-in mice in which 

the endogenous p62 gene was modified to carry the murine equivalent of the most common PDB 

mutation, P394L. In 2008, Hiruma and colleagues described the first p62 P394L (KI) mouse. 

Osteoclast precursors from these mice were hypersensitive to several osteoclastogenic stimuli 

including RANKL, TNF-α, and 1α,25-(OH)2D3. However, the mice failed to develop pagetic 

lesions in the axial skeleton, although the bones displayed minor osteopenia, an indication of 

increased osteoclastogenesis. In terms of an underlying mechanism, they found that the mutation 

exerts effects both on osteoclasts and supporting stromal cells – i.e. the effect of the mutation is 

both cell autonomous (increasing osteoclast precursor sensitivity to RANKL and TNF-α) and non-
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autonomous, increasing stromal cell production of RANKL in response to 1α,25-(OH)2D3 through 

an increase in p38MAPK signaling (Hiruma et al., 2008). 

More recently, another group also generated a p62 P394L mouse in a similar fashion. In contrast to 

Hiruma et al., the Ralston group reported that the mutant mice developed (a) focal lesions on lower 

long bones (on 95% of tested 12-month old homozygous mutants, ~75% of heterozygotes, and 0% 

of wildtype littermates) that were characterized by (b) increases in bone turnover, disruption of 

normal architecture, and accumulation of woven bone, and (c) osteoclast progenitors that were 

hypersensitive to RANKL in vitro, resulting in larger, more nucleated osteoclasts than those 

generated from wildtype littermates. In terms of mechanism, they observed increased transcripts of 

autophagy related genes, such as microtubule-associated protein 1 light chain 3 gene (lc3) and the 

autophagy-related gene 5 (atg5) in RANKL-treated mutant cells. They therefore hypothesized that 

impaired autophagy might explain the increase in nuclear inclusion bodies characteristic of pagetic 

osteoclasts (Daroszewska et al., 2011). 

In the most recent contribution to this dialogue, Kurihara and colleagues bridged the historical 

divide between the genetic and viral etiologies for PDB. They reported that (a) bone marrow from 

eight of twelve PDB patients who harbored the p62 P392L mutation also tested positive for the 

expression of measles virus nucleocapsid protein (MVNP), (b) osteoclast progenitors from these 

patients formed pagetic osteoclasts in vitro, which were inhibited by antisense-MVNP, and (c) that 

osteoclast progenitors from the four case patients who harbored the p62 P392L mutation but did 

not test positive for MVNP formed osteoclasts that were hyper-responsive to RANKL but 

unaffected by antisense-MVNP (Kurihara et al., 2011). A parallel set of experiments was also 

conducted on equivalent murine models. Mice expressing MVNP in the osteoclast-lineage 

developed pagetic osteoclasts in vitro and rare pagetic lesions in vivo, while the p62 knock-in mice 
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formed increased numbers of osteoclasts that were hypersensitive to RANKL, but did not develop 

pagetic lesions. However, when these two lines of mice were interbred, the resulting MVNP/p62 

P394L mice developed more frequent and pronounced pagetic lesions. 

To summarize, p62 is thought to play an important role in the signaling pathways that regulate 

osteoclast differentiation largely based on the abundant epidemiological studies associating 

mutation in p62’s UBA domain with PDB (a disease characterized by dysregulated, overly 

exuberant osteoclast formation), and the aforementioned study conducted by Durán and associates 

in 2004 in which p62 was genetically ablated in mice, resulting in impaired osteoclastogenesis in 

vitro (Durán et al., 2004). More recent mouse models of the most common PDB-associated p62 

UBA domain mutation (P392L) have been generated and characterized by two independent 

groups. There is consensus among the researchers that osteoclasts generated from these mice are 

hyper-responsive to RANKL, but little agreement on anything else (the mechanisms underlying 

this increased sensitivity and activity, the presence or absence of true pagetic lesions in these 

genetic mouse models, and the putative role of a key viral contributor to the development of frank 

PDB). To help unravel the role p62 mutation plays in the pathogenesis of PDB, we will turn to a 

discussion of some of the key pathways and cellular processes that: (a) are putatively regulated by 

p62, (b) may be differentially affected by PDB associated mutations, and (c) thereby alter 

osteoclastogenesis. These include: the NFκB signaling pathway, autophagic protein degradation 

pathways, and reactive oxygen species-generating and oxidative stress response pathways. 
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1.6 p62 and the NFκB signaling pathway 

If the key signaling mediators responsible for the initiation and maintenance of osteoclastogenesis 

include M-CSF, RANK, its ligand RANKL, and their inhibitor, RANK decoy protein OPG, what 

role does p62 play? First, we observe that RANK’s intracellular domain has been shown to lack 

intrinsic enzymatic activity (Darnay et al., 1998). Structural analyses of this domain and the 

molecules that associate with it reveal that RANK’s cytoplasmic tail contains three TRAF-binding 

sites, and that RANKL-initiated signaling is transduced downstream by recruiting adaptor 

molecules from the TRAF family of proteins (Darnay et al., 1998; Galibert et al., 1998; Wong et 

al., 1999; Takahashi et al., 2008). Further phenotypic characterization of TRAF knock-out mice 

has demonstrated that TRAF6 is the major adaptor molecule linking RANK to osteoclastogenesis 

(Lomaga et al., 1999; Naito et al., 1999). TRAF6 knock-out mice were generated by three 

independent groups. Lomaga and associates found that osteoclasts in these mice were normal in 

number but functionally defective (Lomaga et al., 1999), Naito and colleagues reported a complete 

absence of TRAP+ osteoclasts in their TRAF6-/- mice (Naito et al., 1999), while a third group, 

found that osteoclast numbers were considerably reduced but still detectable (Kim, N et al., 2005).  

Functionally, the binding of TRAF6 to RANK induces TRAF6 trimerization and activation. 

TRAF6 undergoes Lysine 63-linked autoubiquitination and the resultant polyubiquitin chains 

facilitate the formation of an activated signaling complex containing upstream RANK and 

downstream TAK-1-binding protein (TAB)2, which results in TGFβ-activated kinase (TAK)1 

activation (Gohda et al., 2005; Mizukami et al., 2002; Lamothe et al., 2007). In this manner, 

TRAF6 transduces the RANK-mediated signal by activating multiple downstream signaling 

pathways, including NFκB, AKT, JNK, p38 MAPK, and ERK, that in turn induce expression of 

genes that regulate osteoclast differentiation, survival, and activity (Roodman and Windle, 2005; 
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Wong et al., 1999; Lamothe et al., 2008 ). In particular, NFκB signaling up-regulates expression of 

the master osteoclastogenic regulator, nuclear factor of activated T-cells c1 (NFATc1), which in 

turn promotes the expression of numerous genes needed for bone resorption, while directly 

inhibiting OPG expression (Kobayashi et al., 2001; Takayanagi et al., 2007; Yamashita et al., 

2007; Aliprantis, 2008). 

 

p62 positively regulates TRAF6 signaling 

Several studies have elucidated the structural and functional associations between TRAF6 and p62. 

Through its TBS domain, p62 binds TRAF6, mediating TRAF6-dependent activation of NFκB 

(Geetha et al., 2002; Wooten et al., 2005). Through its UBA domain, p62 recruits polyubiquitin 

then mediates TRAF6 ubiquitination and ubiquitin-chain transfer to downstream substrates 

(Wooten et al., 2005, Seibenhener et al., 2007). Finally, through its PB1 domain, p62 may dimerize 

and thereby function in the formation of multimeric protein complexes that are critical for TRAF6 

activation (Lamark et al., 2003) or interact with other PB1 domain proteins such as atypical protein 

kinase C (aPKC), which phosphorylates and activates downstream mediators in the NFκB pathway 

(Lamark et al., 2003; Durán et al., 2004). Deletion constructs that remove any of these three 

domains from p62 (TBS, UBA, or PB1), reveal that each is necessary for the activation of TRAF6 

and NFκB in neuronal cell lines (Wooten et al., 2005). 

In the context of osteoclastogenesis, Durán and colleagues provided the first evidence of a role for 

p62 in mediating TRAF6 signaling in the RANK-NFκB signaling pathway (Durán et al., 2004). 

First, the authors demonstrated that p62 is induced and remains elevated after RANKL treatment 

during osteoclastogenesis. Next, they developed and bred p62 knock-out mice and characterized 
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them phenotypically. Interestingly, under basal conditions, they did not detect an osteopetrotic 

phenotype at 6 to 8 weeks of age, as had been demonstrated in TRAF6 knock-out mice, nor were 

differences found in cortical thickness, trabecular size and distribution, or osteoclast number in 

H&E stained tibiae between wildtype and p62 knock-out mice. 

However, when the p62 knock-out mice were treated with the osteoclastogenic parathyroid 

hormone related protein (PTHrP, which increases RANKL production and signaling), they 

demonstrated significantly impaired osteoclastogenesis, increased bone volume, trabecular number 

and thickness. Moreover, culture of precursors obtained from p62 knock-out mice with M-CSF and 

RANKL were significantly deficient in osteoclast production, generating approximately one-third 

the number of osteoclasts as wildtype precursors. Mechanistically, the authors presented additional 

data suggesting that osteoclast precursors from p62 knock-out mice have impaired formation of a 

critical signaling complex involving TRAF6, p62, and aPKC, which results in impaired NFκB 

signaling, NFATc1 up-regulation, and ultimately osteoclast formation (Durán et al., 2004). 

What then accounts for the phenotypic gain of osteoclast function that characterizes PDB in 

patients and mouse models? As noted earlier, the vast majority of PDB-associated mutations 

isolated thus far are located in the carboxy-terminal UBA domain of p62 (Chung and Van Hul, 

2012). Truncating mutations remove significant portions of the UBA domain and result in more 

severe pagetic phenotypes than missense mutations (Layfield et al., 2007; Hocking et al., 2004). 

These observations suggest two possible resolutions: (1) enhanced positive regulation, whereby 

each of these mutations produces enhanced RANK signaling, or (2) impaired negative regulation, 

whereby binding of a negative mediator of RANK signaling that acts at p62’s UBA domain is 

attenuated. As detailed below, this latter explanation is supported by several lines of recent 

experimental evidence. 
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p62 also plays a role in the negative regulation of TRAF6 signaling 

In particular, p62 has been shown to bind the tumor suppressor CYLD, and recruit it to the RANK-

TRAF6 complex in neuronal cells (Wooten et al., 2008), osteoclasts (Jin et al., 2008), and 

macrophages (Kim et al., 2009). CYLD is a deubiquitinating enzyme that digests Lysine 63-linked 

polyubiquitin chains (Kovalenko et al., 2003) and has previously been shown to negatively 

modulate both TRAF and TRAF-mediated downstream molecules such as IKK kinase (Kovalenko 

et al., 2003; Courtois, 2008). It has been further demonstrated that NFκB activation is required for 

CYLD induction, suggesting that CYLD acts as a negative feedback modulator in NFκB 

autoregulation (Jono et al., 2009). Jin and colleagues demonstrated that CYLD knock-out mice 

develop severe osteoporosis (loss of > 50% trabecular bone volume at 14 weeks of age) and that 

this phenotype is caused primarily by an increased number of osteoclasts (Jin et al., 2008). Further 

in vitro characterization of pre-osteoclasts derived from these CYLD-/- mice demonstrated that 

these cells are hypersensitive to RANKL stimulation and accumulate substantially more 

ubiquitinated TRAF6 than wildtype controls. Moreover, pre-osteoclasts obtained from wildtype 

controls showed that CYLD is induced 24 hours after RANKL stimulation. Finally, transfection of 

CYLD into HEK 293 cells potently inhibited RANKL-induced TRAF6 ubiquitination and co-

immunoprecipitated with TRAF6 in the presence of p62, but not a p62ΔUBA deletion mutant (Jin 

et al., 2008). 

One year later, Kim and Ozato analyzed temporal expression and association patterns of p62, 

TRAF6, and CYLD in macrophages (Kim et al., 2009). Using sequential co-immunoprecipitations, 

they demonstrated that within 15 minutes of activation by stimulatory cytokines, TRAF6 was both 

ubiquitinated and bound to p62 in RAW cells. At one hour post-activation, though, both TRAF6’s 

ubiquitination and its association with p62 were diminished, replaced by a strong p62-CYLD 
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interaction (Kim et al., 2009). Finally, Sundaram and colleagues recently confirmed that CYLD 

binds p62 in both wildtype and mutant osteoclast progenitor cells in which PDB-associated, though 

non-UBA, p62
A381V

 is overexpressed, but not when the most common PDB-associated p62
P392L

 is 

overexpressed (Sundaram et al., 2011). Furthermore, they demonstrated elevated levels of 

ubiquitinated TRAF6 in p62
P392L

 transfected cells during osteoclastogenesis (Sundaram et al., 

2011). 

 

NFκB signaling, p62, and PDB – a unifying hypothesis 

Taken together with earlier findings that RANKL induces CYLD expression and that CYLD acts 

as a deubiquitinase, the results noted above suggest a hypothesis in which p62 coordinates the 

orderly ubiquitination and deubiquitination of TRAF6, sequentially activating then attenuating 

downstream signaling. PDB-associated mutations in the carboxy-terminal UBA domain of p62 

may result in impaired CYLD binding or activity and decreased deubiquitination, thereby 

predisposing affected cells to diminished negative feedback regulation of TRAF6 mediated 

signaling (Figure 1.6). In osteoclasts this may lead to enhanced activation of NFκB and NFATc1, 

increased osteoclastogenesis and a permissive environment in which exposure to a second insult 

(e.g. viral agent) may lead to abnormal bone resorption and formation – the hallmarks of PDB.  
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RANK 
Receptor activator of 
NFKB 
 
RANKL 
RANK-Ligand 
 
OPG 
Osteoprotegerin 
 
TRAF6 
TNF Receptor Associated 
Factor6 
 
Ub 
Ubiquitination at lysine 63 
(K63) or lysine 48 (K48) 
 
aPKC 
atypical protein kinase  
 
TAB 
TAK-1-binding protein 
 
TAK1 
TGFβ-activated kinase 
 
NFκB 
nuclear factor kappa-light-
chain-enhancer of 
activated B cells 
 
NFATc1 
Nuclear factor of activated 
T cells cytoplasmic 1 
 
CYLD 
Deubiquitinase 
Cylindromatosis  

Figure 1.6. Putative roles of p62, TRAF6, and CYLD in osteoclast formation and activation. 
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NFκB signaling and p62 – important caveats 

While this hypothesis integrates several findings in the literature, several questions remain. First, if 

TRAF6-/- mice are osteopetrotic (Lomaga et al., 1999; Naito et al., 1999), CYLD-/- mice are 

osteoporotic (Jin et al., 2008), and p62 mediates both TRAF6 and CYLD signaling, then why do 

p62-/- mice demonstrate structurally normal bone under basal conditions (Durán et al., 2004)? As 

noted in the discussion about p62 P394L mouse models above, interpretation of phenotypic data 

may vary despite models being generated in identical ways. One potential confounder among these 

studies is heterogeneity of experimental method. Early studies on TRAF6-/- mice were conducted 

on animals ranging from 2 (Naito et al., 1999) to 4 weeks (Lomaga et al., 1999) of age, while p62 -

/- mice were characterized at 6 to 8 weeks of age (Durán et al., 2004), and CYLD-/- mice at 14 

weeks of age (Jin et al., 2008). This is significant because, while mice reach sexual maturity at 6 to 

8 weeks of age, they do not achieve peak bone mass until 16 to 24 weeks of age in the majority of 

mouse strains (Jilka, 2013) and continue to accrue bone for months afterwards. Moreover, citing 

unpublished results, investigators have suggested that p62-/- mice exhibit mature-onset obesity 

accompanied by increased bone mineral density, which implies osteopetrosis (Rodriguez et al., 

2006). These deficiencies in our knowledge highlight the need for further experiments, and in 

particular, for standardization in phenotypic characterization by comparing mice with genotypes of 

interest on the same genetic background at the same stage of skeletal maturation. While this 

challenge is taken up in chapter two, we must also acknowledge that though such experiments may 

resolve many unknowns, the possibility that p62 affects skeletal homeostasis via alternative 

pathways must also be explored. 
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1.7 p62 and autophagy 

In this light, it has been proposed that p62 mediates osteoclast formation and activity through its 

role as a mediator of autophagy (Daroszewska et al., 2011), an evolutionarily conserved 

intracellular degradation process. Most broadly, autophagy is a catabolic process in which 

intracellular components are sequestered in double-membraned components, autophagosomes, and 

delivered to the lysosome for degradation (Mizushima et al., 2009). This process may be non-

selective, as in so called “bulk autophagy” which is induced by starvation to provide the cell with 

essential nutrients. It may also be selective, in which targets, such as misfolded proteins, protein 

aggregates, damaged organelles (mitophagy), or even pathogens (xenophagy), are tagged by post-

translational modification (protein ubiquitination, in particular) and cleared by the 

autophagolysosome (Kirkin et al., 2009; Ashrafi and Schwarz, 2011). In this process, particular 

molecular chaperones or autophagy receptors have been identified that bind ubiquitinated targets 

and shuttle them to the autophagosome for selective degradation (Kirkin et al., 2009). While it has 

been known that p62 binds both mono- and poly-ubiquitinated protein aggregates through its C-

terminal UBA domain since it was first cloned nearly twenty years ago, (Vadlamudi et al., 1996), it 

was only in 2007 that researchers showed that p62 also serves as an autophagy receptor, proving 

that it was required for the formation of ubiquitinated aggregates in cytosolic bodies, that LC3 or 

microtubule-associated protein 1A/1B-light chain 3 (found on the inner sheath of autophagosomes 

and a key marker of autophagy) co-localized with these aggregates, and that both elements were 

required for their formation and degradation in autophagolysosomes (Komatsu et al., 2007; Pankiv 

et al., 2007; Nezis et al., 2008). The physiological roles of selective autophagy are the subject of 

continued investigation, but it is interesting to note that targets may be very specific. For example, 

in C. elegans, SQST-1 (the homolog of p62) has been shown to specifically mediate the 
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degradation of a core component of the micro RNA induced gene silencing complex (miRISC) 

through selective autophagy (Zhang and Zhang, 2013), while in mammalian cells, selective 

autophagy mediated by the adaptor NDP52, rather than p62, has been shown to degrade the 

primary miRNA processing enzyme and effector, DICER and AGO2, respectively, in the 

regulation of microRNA activity (Gibbings et al., 2012).  

How PDB-associated mutation to UBA domains might alter normal cellular homeostasis has not 

been elucidated mechanistically, but we may speculate that bulk degradation and cellular energy 

homeostasis may be altered. Remarkably, it has been demonstrated that severe ATP-depletion 

leads to increased bone resorbing activity and accelerated apoptosis, while the release of ATP from 

intracellular stores diminishes bone resorption through an autocrine/ paracrine feedback loop 

(Miyazaki et al., 2012). This is particularly noteworthy in fully differentiated, bone-resorbing 

osteoclasts, which are characterized by an over-abundance of mitochondria, required to power 

energy-taxing activities as bone resorption (Gonzales and Karnovsky, 1961). We might 

hypothesize that toxic byproducts of oxidative phosphorylation (reactive oxygen species such as 

superoxide anion, hydrogen peroxide, and hydroxyl radicals) accumulate in osteoclasts, damaging 

lipids, nucleic acids, and proteins. PDB-associated mutations to p62’s UBA domain might impair 

p62’s ability to bind accumulating damaged organelles, misfolded proteins, and ubiquitinated 

aggregates, and shuttle them to autophagosomes, which may then result, in an increased resorptive 

burst (due perhaps to fewer potential substrates for intracellular ATP production), accompanied by 

more rapid accumulation of toxic byproducts, and ultimately apoptosis. Alternatively, degradation 

of a very specific target or regulator that is normally selectively degraded by autophagy during 

cellular differentiation, akin to the miRISC component in C. elegans, may be perturbed by PDB-

associated mutations to p62’s UBA domain, resulting in altered osteoclast structure and function. 
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1.8 p62, reactive oxygen species, and the oxidative stress response 

A third potential mechanism by which p62 might mediate osteoclastogenesis, alluded to above, is 

the cellular response to oxidative stress. It has been known for nearly two decades that osteoclast 

formation is enhanced by superoxide dismutase and suppressed by catalase, which catalyze the 

production and degradation, respectively, of H2O2 in a dose-dependent manner (Bax et al., 1992; 

Suda et al., 1993). Sodium nitroprusside, a nitric oxide donor, significantly increases the generation 

of osteoclasts when added to cultures in low concentrations (Chae et al., 1997). Moreover, 

RANKL stimulation of osteoclast progenitors transiently increases intracellular ROS through a 

signaling cascade involving TRAF6 (Lee et al., 2005), while application of the antioxidant N-

acetylcysteine (NAC) or suppressing the activity of Nox (an enzyme that catalyzes the production 

of ROS) inhibit the responses of progenitors to RANKL, including JNK signaling, p38MAPK 

signaling, ERK signaling, and ultimately osteoclast differentiation (Lee et al., 2005). The 

importance of ROS-mediated signaling, however, is not limited to the formation of osteoclasts. 

Indeed, fully formed osteoclasts are often characterized by expression of tartrate resistant acid 

phosphatase (TRAP) which catalyzes production of elevated levels of hydroxyl radicals and 

partially co-localizes with late endosomal/lysosomal markers (Räisänen et al., 2001). Interestingly, 

altering redox status by varying concentrations of H2O2 within controlled ranges (that do not alter 

cellular viability, 0 to 40 μM), yields a biphasic pattern in osteoclasts: moderate concentrations 

enhance formation of TRAP-positive osteoclasts in a dose-dependent manner, while excessive 

concentrations decrease the number of TRAP-positive osteoclasts (Kim et al., 2006). 

Given the requirement for an optimal level of ROS production in intracellular signaling in the 

differentiation and activation of osteoclasts, it is not surprising that cells exert exquisite control 
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over cellular redox status. The cell’s primary defense against oxidative stress is the KEAP1-NRF2 

pathway. KEAP1 is a cytoplasmic inhibitor of NRF2 (Nuclear factor (erythroid-derived 2)-like 2, 

also known as NFE2L2), a transcription factor and master regulator of cellular redox homeostasis 

(Stępkowski and Kruszewski, 2011). Under non-stressed conditions, KEAP1 mediates the 

constitutive ubiquitination and proteasomal degradation of NRF2 (Nezis and Stenmark, 2012), 

while in the presence of electrophiles or ROS, KEAP1’s cysteine residues are modified leading to 

its inactivation. Free of KEAP1, NRF2 is stabilized (its half-life goes from 7 minutes to 70 

minutes) translocates into the nucleus, and, after heterodimerizing with small Maf proteins, induces 

expression of genes responsible for (a) intracellular redox-balance (e.g. glutamate cysteine ligase), 

(b) elimination of ROS (e.g. thioredoxin reductase 1, peroxiredoxin), (c) phase II detoxification 

(e.g. NQO1, glutathione S-transferase), and (d) transport (multidrug resistance protein 1) 

(Stępkowski and Kruszewski, 2011; Nezis and Stenmark, 2012; Taguchi et al., 2012). 

Through its evolutionarily-conserved KEAP1-interacting region (KIR, corresponding to residues 

344-356 in humans and 346-358 in mice), p62 interacts with the NRF2-binding site on KEAP1, 

competitively displacing the KEAP1-NRF2 interaction under conditions of oxidative stress (Ishii et 

al., 1996, Ishii et al., 1997; Nezis and Stenmark, 2012; Wright et al., 2013). Remarkably, p62 is 

also induced by NRF2, forming a positive-feedback loop in the antioxidant response (Jain et al., 

2010). Moreover, it has been reported that p62 controls basal levels of KEAP1. In one study, 

overexpression of p62 led to a decrease in the basal protein level of KEAP1 in several cell lines, 

while RNAi mediated depletion of p62 resulted in: (a) an increase KEAP1 protein levels (its half-

life nearly doubling from 11 to 21 hours) and (b) a concomitant decrease in NRF2 protein levels 

(and downstream targets), absent changes in KEAP1 or NRF2 mRNA levels (Copple et al., 2010). 
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A subsequent study has confirmed that KEAP1 is degraded by autophagy rather than the 

proteasome in a p62-dependent manner (Figure 1.7; Taguchi et al., 2012).  

In this light, we may speculate that PDB-associated mutations to p62 may alter its ability to 

competitively displace KEAP1, thereby decreasing NRF2 translocation into the nucleus, and 

diminishing the antioxidant response that is so critical in metabolically active osteoclasts. Two 

recent publications reinforce this hypothesis. In 2013, Wright and colleagues, demonstrated that a 

rare, PDB-associated, p62 KIR-domain mutant, p62 S349T, was associated with impaired p62-

KEAP1 interaction and decreased NRF2 activity via Co-IP and NQO1-promoter driven reporter 

assays, respectively, in transfected HEK293T cells, while ubiquitin binding and NFκB signaling 

were indistinguishable from wildtype (Wright et al., 2013). A second research group has provided 

a plausible molecular basis for this observation, demonstrating: (a) that the p62-KIR interaction 

with KEAP1 was two orders of magnitude weaker than that between NRF2 and KEAP1 in its 

native state, but when S351 (the murine equivalent of S349 in humans) was phosphorylated, its 

binding affinity for KEAP1 increased 30-fold (Ichimura et al., 2013). Furthermore, they 

demonstrated that oxidative stressors increased the expression of p62, its phosphorylation at 

residue 351, its aggregation in cytosolic autophagosomes, the time-dependent sequestration of 

KEAP1 in these structures, and a concomitant increase in nuclear fraction of NRF2 and expression 

of cytoprotective downstream targets (Ichimura et al., 2013). 
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Figure 1.7. The role of p62 in the oxidative stress response. Under normal conditions, KEAP1 constitutively mediates the proteasomal 
degradation of NRF2. Under conditions of oxidative stress, KEAP1 is destabilized or competitively displaced by phosphorylated p62 and degraded by 
the autophagosome. Meanwhile, NRF2 is stabilized, translocates and accumulates in the nucleus where it induces the expression of antioxidant 
genes and p62, in a positive feedback loop. Figure adapted from Ichimura et al., Phosphorylation of p62 activates the Keap1-Nrf2 pathway during 
selective autophagy. Mol Cell. 2013 Sep 12;51(5):618-31. 
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1.9 Summary and dissertation overview 

Although first identified over a century ago, surprising gaps remain in our knowledge of PDB. 

Genetic factors, for example, irrefutably contribute to disease pathophysiology. Yet, PDB 

manifests in a highly focal manner, often affecting a single site in a single bone in the body, and is 

generally not at all systemic or diffuse as we might expect of a “genetic bone disease.” 

Furthermore, evidence for environmental contributors, such as viruses, to PDB etiology has been 

presented for at least 30 years, yet the identity and nature of these contributors still evokes heated 

debate among specialists in the field. The research described in this dissertation was undertaken 

specifically to shed light on one such gap in our understanding of PDB – the role played by the 

multifunctional adaptor protein p62 in the cellular physiology of osteoclasts in health and disease. 

In particular, it is well established that osteoclasts, bone’s principal resorptive cells, are both 

structurally and functionally anomalous in the focal lesions characteristic of PDB. Dysregulated 

osteoclast activity accounts for the clinical manifestations of the disease, which may include bone 

pain, skeletal deformity, neurological complications, pathologic fractures, deafness, and 

osteosarcoma at a 1000-fold greater incidence than in the general population. Genetic analyses 

published over one decade ago, and corroborated epidemiologically since, have shown that p62 is 

the gene product most frequently linked to Paget’s and, when mutated, is associated with up to 

50% of familial cases and 10% of sporadic cases of the disease. 

But what is known of p62’s basal function? What specific functions does it play in osteoclasts? 

The literature paints an interesting yet confounding picture – and our primary objective in this 

dissertation was to elucidate it. To help and model understand the role p62 plays in 

osteoclastogenesis and PDB, our group has obtained mice from which p62 has been genetically 
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knocked-out (p62 KO) and generated mice harboring a mutation causing a proline to leucine 

substitution at residue 394 of p62 (p62 KI), the murine equivalent of the most common PDB-

associated mutation in humans. We then initiated breeding colonies, back-crossing our mice and 

wildtype controls (WT) to a common C57Bl/6 background, and undertook careful characterization 

experiments in vivo and in vitro to confirm reported phenotypes about skeletal architecture and 

cellular function, before proceeding to a detailed study of underlying mechanisms. 

We did so primarily by employing hypothesis generating techniques during the course of this 

project. Specifically, we aimed at further elucidating our understanding of p62 function during 

osteoclastogenesis in an unbiased and global manner using DNA Microarray gene expression 

profiling paired with pathway analysis tools to identify critical transcriptional regulators and 

signaling pathways that are altered when p62 is mutated, as in PDB, or knocked-out. We validate 

these results functionally testing predictions about specific signaling pathways culled from the 

microarray results. In this context, we pay particular attention to the RANK-TRAF6-NFκB 

pathway, reactive oxygen species and the oxidative stress response, and general measures of 

proliferation and survival, using the tools of Western Blotting, Co-Immunoprecipitation, and 

ELISA to help elucidate the role of p62 in osteoclastogenesis and Paget’s disease of bone. 
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CHAPTER 2 

EFFECTS OF p62 ABLATION AND MUTATION ON BONE STRUCTURE AND 

OSTEOCLASTOGENESIS 

 

2.1 Introduction 

Over one decade ago, the first correlations between mutations in p62 and Paget’s disease of bone 

in patient populations were made. In the intervening years, genetic manipulation of mouse models, 

biochemical studies on progenitors derived therefrom, and epidemiological studies in patient 

populations the world over, have drawn a fascinating, if confounding, portrait of the complex role 

played by p62 in osteoclastogenesis. As detailed in the previous chapter, different research groups 

have shown that full length p62: (a) does not affect basal osteoclastogenesis, but (b) regulates 

osteoclastogenesis in response to stimulating cytokines such as PTHrP in vivo, and RANKL in 

vitro; and that a common PDB-associated p62 UBA-domain mutation: (c) is responsible for cell 

autonomous increases in progenitor sensitivity and activity, and (d) may or may not be sufficient to 

generate pagetic lesions in mouse models. In the present chapter, we highlight our efforts to clarify 

the effect of genotype on skeletal phenotype, cellular morphology, and activity. To do so, we 

obtained mouse models in which p62 has been ablated (p62-/- or KO) or mutated genetically (p62
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P394L knock-in or KI), backcrossed them onto a common C57Bl/6 background, and conducted 

careful phenotypic studies, as detailed below. 

 

2.2 Methods 

Generation of p62 P394L KI mice
1
 

p62 P394L mice were previously generated in the laboratory of Dr. Jolene Windle in the Virginia 

Commonwealth University School of Medicine and published in an account in the journal Human 

and Molecular Genetics (Hiruma et al., 2008). Briefly, a line of KI mice with a targeted mutation 

in the endogenous p62 gene encoding a proline-to-leucine substitution at amino acid residue 394 

was generated by homologous recombination (Figure 2.1). For the purposes of maintaining a 

standard genetic background for all experiments in this project, the mutation at the p62 gene locus 

was transferred onto the inbred strain C57BL/6J by backcrossing more than 6 times, and 

homozygous mutants (p62P394L/P394L, KI) were used for subsequent experiments. Mouse tail 

DNA was used for genotyping by PCR using a pair of primers that flank the introduced loxP site: 

5`-ACT CCA GTC TCT ACA GAT GCC AG-3` and antisense (intron 7): 5`-GTT GCC AAG 

ACT AGA CAG GAC AGG-3`, yielding a product of 182 bp for the WT allele and 226 for the 

p62-P394L KI allele. Water and regular chow were available ad libitum and all mice were handled 

in accordance with IACUC approved procedures at the VCU School of Medicine. 

 

                                                 
1 Both this section and the accompanying figures are adapted from the paper in which they first appeared (Hiruma et 

al., 2008) and are included for the sake of reference and comparison in this dissertation. No credit for the generation or 

initial characterization of these mice is claimed by the author. 
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Generation of p62-/- KO mice
2
 

p62-/- (KO) mice were also generated by homologous recombination, but in the lab of Dr. 

Jaekyoon Shin at Sungkyunkwan Medical School in South Korea and obtained by the laboratory of 

Dr. Windle at the Virginia Commonwealth University School of Medicine. Although Dr. Windle’s 

lab first obtained the p62-/- (KO) mice, which were already on the C57Bl/6J genetic background, 

and initiated its own breeding colony of these mice in 2006, the targeting strategy was published 

only recently in the EMBO journal (Figure 2.1, adapted from Kwon et al., 2012). Homozygous 

mutants (p62-/- or KO) were used for subsequent experiments. These mice were genotyped using 

the following primers: p62 (1822-1845): GCT AAC AAA ATG AAG CCA GAT GGG, p62 

(2222-2199): GCC TGG CAT CTA AGT TGT TCT GAG, and PGK (353-332): CTGA GCC 

CAG AAA GCG AAG GAG, yielding a product of 401 bp for the WT allele and 583 bp for the 

p62 -/- allele. Water and regular chow were available ad libitum and all mice were handled in 

accordance with IACUC approved procedures at the VCU School of Medicine. 

 

Bone Histomorphometry 

The term bone histomorphometry refers to the science and craft of the histological assessment of 

bone phenotypes. Its practice facilitates the visualization and quantification of bone cells in tissue – 

i.e., osteoblasts, osteoclasts, osteocytes in the context of the organic and mineral milieu in which 

they reside – permitting the comparison of groups (baseline vs. disease, transgenic vs. wildtype, 

etc.) even when differences are not grossly evident. 

 

                                                 
2 Both this section and the accompanying figures are taken directly, with little change to the text, from the papers in 

which they first appeared (Kwon et al., 2012) and are only included for the sake of reference and comparison in this 

dissertation. No credit for the generation or initial characterization of these mice is claimed by the author. 
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Figure 2.1. Targeting strategies for the generation of p62 P394L knock-in and p62-/- mice.  

(A) Targeting strategy for the generation of p62 P394L knock-in (KI) mice, as previously published by the Windle lab. Schematic representation of the 
murine p62 gene (indicating the location of codon 394 in exon 8), targeting vector, initial targeted p62 locus, and final targeted p62 locus following 
transient cre expression in ES cells. Adapted from Figure 1 in Hiruma et al., A SQSTM1/p62 mutation linked to Paget's disease increases the 
osteoclastogenic potential of the bone microenvironment. Hum Mol Genet. 2008 Dec 1;17(23):3708-19. 

(B) Targeting strategy for the generation of p62-/- (KO) mice, as previously published by the Shin lab. Schematic representation of the murine p62 
gene, targeting vector for knocking out exon 1, and final targeted locus. Please note, sequencing conducted by Dr. Mark Subler has demonstrated the 
presence of an intact full-length exon 2 in the targeted p62 locus. More specifically, the deletion extends from 310 bp 5` of the first AUG start codon, 
and extends approximately 2 kb, through most of intron 1 concluding 44 bp 5` of the start of exon 2 (personal communication). The figure has been 
modified to reflect this correction. Adapted from Figure S1 in Kwon et al., Assurance of mitochondrial integrity and mammalian longevity by the p62-
Keap1-Nrf2-Nqo1 cascade. EMBO Rep. 2012 Feb 1;13(2):150-6. 
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Histomorphometry Specimen Preparation and Processing 

Ten 12 to 14-month old p62-/- (KO), p62 P394L/P394L (KI), and age-matched wildtype (WT) 

controls were weighed and sacrificed. After euthanasia, their hindlimbs and spinal columns were 

manually dissected free of soft tissue, fixed in 50mL of neutral buffered 10% formalin, and 

submitted to Dr. Hua Zhou at the Helen Hayes Hospital, New York for histomorphometric 

analysis. Tissue fixation, decalcification, and processing followed previously published methods 

(Kurihara et al., Cell Metabolism, 2011) and all procedures were conducted with approval from the 

Institutional Animal Care and Use Committee at Virginia Commonwealth University. 

Specifically, after initial fixation, spinal segments from lumbar vertebrae 1 through 4 were isolated, 

fixed in 10% neutral buffered formalin for a minimum of two weeks, rinsed in running distilled 

water for 1-3 days, fixed in 70% EtOH, rinsed in running distilled water for 1-3 days, then 

decalcified in 250mL of 15% disodium EDTA (Fisher Chemical) at 4°C under constant agitation 

for 10 weeks. The EDTA solution was changed daily for the first month, and every 3 to 4 days 

thereafter.  When decalcification was complete, each spinal column segment was removed from 

EDTA, rinsed in running distilled water, dehydrated in graded ethanol solutions, cleared in xylene, 

and infiltrated then embedded in paraffin (TissuePrep) using a vacuum infiltration processor 

(Tissue-Tek VIP). 

 

Tartrate Resistant Acid Phosphatase (TRAP) Staining 

Among bone cells, differentiated osteoclasts uniquely express tartrate resistant acid phosphatase 

(TRAP). To illustrate these cells in section, samples are incubated in a solution containing naphthol 

AS-BI phosphoric acid and freshly diazotized fast garnet GBC. Enzymatic hydrolysis by tartrate 
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resistant acid phosphatase releases Naphthol AS-BI which immediately couples with fast garnet 

GBC, forming insoluble maroon deposits at sites of activity. Cells with tartrate sensitive acid 

phosphatases are devoid of activity and therefore do not stain red. Accordingly, decalcified 

sections obtained from experimental animals were assayed for TRAP activity according to 

manufacturer specifications (Sigma 387A, Sigma-Aldrich). 

Specifically, all slides were dewaxed in xylene (5min x 2), then rehydrated in graded ethanol baths 

to water (5min 100% EtOH x 2, 3min 95% EtOH x 2, 3min 70% EtOH, 5min deionized H2O), 

then incubated for one hour at 37°C in freshly made TRAP solution (diazotized Fast Garnet GBC, 

Naphthol AS-BI phosphate, acetate, tartrate, and deionized water). All sections were evaluated by 

light microscopy and red-stained cells were counted as OCLs. 

 

Histomorphometry Quantification 

Another set of sections was stained with 0.1% toluidine blue. Histomorphometry was performed 

on the region of cancellous bone between the cranial and caudal growth plates of the third lumbar 

vertebral body under bright field and polarized light at a magnification of ×200, using 

OsteoMeasure 4.00C morphometric program (OsteoMeasure; OsteoMetrics). Osteoclast surface 

was defined as the area of bone surface covered with TRAP-positive and mono- and multinuclear 

cells. Osteoblast surface, cancellous bone volume, trabecular width, trabecular number, and 

trabecular separation were also quantified and calculated. All variables were expressed and 

calculated according to the recommendations of the American Society for Bone and Mineral 

Research Nomenclature Committee (Parfitt et al., 1987). 
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TNF-α Specimen Preparation and Processing 

Acute, intermittent application of TNF-α over the calvariae of mice has been long known to induce 

osteoclast formation by directly acting on receptors on the cell surface of osteoclast progenitors, 

unlike PTHrP which is thought to induce RANKL expression in stromal cells, and thereby increase 

osteoclastogenesis indirectly. Application of TNF-α was performed as described previously 

(Ishizuka et al., JBMR 2011). In brief, murine TNF-α (Millipore, 1.5μg in 50μL of saline) or the 

same volume of saline was injected once daily for 5 consecutive days into the subcutaneous layer 

overlaying the calvariae of 2-month-old KO (n = 11), KI (n = 10), and WT control (n = 8) mice. 

On day 6, calvariae were harvested, fixed in 10% neutral buffered formalin, and processed for 

histology. Tissue fixation, decalcification, processing, and TRAP staining followed previously 

published methods (Kurihara et al., Cell Metabolism, 2011) and procedures were conducted with 

approval from the Institutional Animal Care and Use Committee at Virginia Commonwealth 

University. 

 

Osteoclast formation and bone resorption 

Non-adherent marrow cells (1 x 10
5
cells/well: 96-well plate; 2.6 to 3 x 10

6
cells/well: 6-well, 6cm 

plate, and 10cm plates) were prepared as previously described (Hiruma et al., 2008) and cultured in 

α-MEM + 10% FBS + 1% antibiotic/antimycotic for 2 days in the presence of recombinant murine 

M-CSF (20ng/mL, R&D), and then an additional bolus of various concentrations of M-CSF and 

recombinant murine RANK (R&D), as noted. Cells were then stained for TRAP using a leukocyte 

acid phosphatase kit (Sigma), and TRAP-positive cells were quantitated. For bone resorption, 

Non-adherent marrow cells were cultured on mammoth dentin slices (Wako, Osaka, Japan) in 

cultured in α-MEM + 10% FBS containing 10ng/mL M-CSF and 50ng/mL RANKL. After 14 days 
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of culture, the dentin slices were stained with acid hematoxylin, and areas of dentin resorption 

were determined using image analysis techniques (Image J, NIH). 

 

Statistical Analysis 

Significance was evaluated using the StatView Software package (StatView for Windows, SAS 

Institute, v5.0.1) by a two-sided, unpaired Student’s t test or two-way analysis of variance 

(ANOVA) where indicated. The criterion for statistical significance was p < 0.05. Post-hoc 

analysis was performed using the Tukey-Kramer test as appropriate.  
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2.3 Results 

Genetic manipulation at the p62 locus alters mRNA expression 

During individual crosses between KI heterozygotes on the C57Bl/6J background, offspring of 

each of the three possible genotypes (wildtype or p62 +/+, heterozygous knock-ins or p62 

+/P394L, and homozygous knock-ins or p62 P394L/P394L) were generated in the expected ratio, 

indicating that this mutation had no discernible effect on normal embryonic development. Further, 

both KI heterozygotes and homozygotes were viable and had no grossly apparent phenotypic 

abnormalities up to 1.5 years of age. The same was true of crosses between KO heterozygotes, in 

that offspring of each of the three possible genotypes (wildtype, p62 +/-, p62 +/+) were generated 

in the expected ratio, indicating that this knock-out also had no discernible effect on normal 

embryonic development. Further, both KO heterozygotes and homozygotes were viable. 

Interestingly, by four to five months of age, an obesity phenotype is readily discernible in these 

mice, similar to that previously published and documented by the lab of Dr. Jorge Moscat 

(Rodriguez et al., 2006), whose group published the first p62-/- mouse, generated through an 

alternative targeting strategy (Durán et al., 2004). 

To confirm that p62 expression was absent in the KO mice, and to compare expression levels in 

the WT and KI mice, osteoclast progenitors were generated from mice of each genotype by 

treating marrow cultures with M-CSF (20ng/mL) for 3 days, and then culturing for an addition 8 

hours with M-CSF (20ng/mL) ± RANKL (100ng/mL). Protein extracts were then prepared, and 

p62 levels assessed by western blot analysis (Figure 2.2).  Relative p62 mRNA levels were 

determined from the microarray studies described in chapter three.  As expected, no p62 mRNA or 
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Figure 2.2a. Expression of p62 mRNA and protein in KO, WT, and KI osteoclast progenitors. 

(A) Relative p62 mRNA levels quantified from microarray experiment. Transcript intensity levels were normalized to internal GAPDH levels on each 
Chip. SEM derived from n = 3 genotype-treatment combinations. (a, b, c, d, p < 0.05 using one-way ANOVA, Bonferroni corrected) 
 
(B) Effect of p62 genotype on p62 protein levels. A representative immunoblot showing the levels of p62 and actin, obtained from whole cell lysates of 
osteoclast progenitors from KO, WT, and KI mice cultured in the presence or absence M-CSF and RANKL. 
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protein was detected, either in the presence or absence of RANKL in the KO cells, consistent with 

the fact the entire first exon, including the translation start site, has been deleted in the KO mice 

(Figure 2.2a). In the WT and KI osteoclast progenitors, p62 protein levels were indistinguishable, 

indicating that the P394L mutation does not have a significant effect on p62 protein stability. 

Interestingly, the KIs expressed p62 mRNA at 1.8 and 2.4 fold higher levels than WT in the 

presence and absence of RANKL, respectively (Figure 2.2a). However, the significance of this 

finding is unclear, since the difference is not reflected at the protein level. 
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Figure 2.2b. p62 KO mice develop mature-onset obesity. 

The masses of various sets of female (left panel, n = 34 KO, n = 30 WT) and male (right panel, n = 34 KO, n = 19 WT) mice were measured 
intermittently. As observed in previous studies, p62 -/- mice develop mature-onset obesity that, in our hands, is first detectable at 3 months of age. 
Results shown are the mean ± SEM. The masses of KI mice were indistinguishable from WT (data not shown). 
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Histomorphometric analysis of bones from one-year-old mice of each genotype 

KO and KI mice, backcrossed onto the C57Bl/6J genetic background, along with WT control mice 

from the same colonies, were aged for one year and their weights were measured intermittently 

(Figure 2.2b). Of particular note, p62 KO mice developed mature-onset obesity that is first 

detectable as soon as three months of age, but becomes particularly prominent at 5 months of age 

(Figure 2.2b), confirming a previously published finding (Rodriguez et al., 2006).  

For histomorphometry, animals were sacrificed, and spinal columns were harvested, fixed, 

processed for histology, and assessed for measures of bone structure. All histomorphometric 

analysis was conducted by Dr. Hua Zhou at the Helen Hayes Hospital, New York. Interestingly, no 

PDB-like pagetic lesions were observed in bones from mice of any genotype. 

While there was a trend suggesting that osteoclast formation was impaired in KO mice, it did not 

reach statistical significance (p = 0.075, Figure 2.3a). On balance, for measures of both (a) bone 

cellular activity, such as osteoblast surface, and (b) bone structure and cancellous bone 

microarchitecture, such as bone volume, trabecular thickness, number, and spacing – there were no 

statistically significant differences between WT and KO mice, under basal, unstimulated 

conditions (Figure 2.3a). In contrast, there was a pronounced structural phenotype in p62 KI mice 

compared to WT controls (Figure 2.3b): bone volume was reduced by approximately 33% (p = 

0.005), while trabecular number was reduced by 25% (p = 0.02), and resulting spacing between
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Figure 2.3a. Effect of genotype on bone histomorphometric parameters in p62 KO mice (n = 10) and age-matched WT (n = 10) control mice. 
Results shown are the mean ± SEM. * p < 0.05, ** p < 0.005. Abbreviations: BV, bone volume; TV, tissue volume; Oc.S, osteoclast surface; Ob.S, 
osteoblast surface; BS, bone surface; Tb.N, trabecular number; Tb.Th, trabecular thickness; Tb.Sp, trabecular spacing.  
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Figure 2.3b. Effect of genotype on bone histomorphometric parameters in p62 P394L KI mice (n = 9) and age-matched WT (n = 10) control 
mice. Results shown are the mean ± SEM. * p < 0.05, ** p < 0.005. Abbreviations: BV, bone volume; TV, tissue volume; Oc.S, osteoclast surface; 
Ob.S, osteoblast surface; BS, bone surface; Tb.N, trabecular number; Tb.Th, trabecular thickness; Tb.Sp, trabecular spacing. 
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trabeculae increased by approximately 40% (p < 0.05). Interestingly, osteoclast surface was not 

statistically distinguishable between KI and WT controls when the data are pooled by gender 

(Figure 2.3b, p = 0.37). However, osteoclast formation in female KI mice exceeded that in WT 

females by approximately 25% (data not shown, p = 0.04), while no differences in osteoblast 

surface were observed, even when separated out by gender (data not shown). 

Effect of TNF-α on in vivo osteoclastogenesis in mice of each genotype  

Eight-week-old female KO, WT, and KI mice were subjected to supracalvarial, subcutaneous 

injection of TNF-α, a potent, direct inducer of osteoclast formation and activity, and osteoclast 

numbers in sections of the treated calvariae were counted (Figure 2.4). As expected, TNF-α caused 

a potent induction of osteoclastogenesis in WT mice (↑80%, p < 0.005, Figure 2.4a), while this 

effect was completely absent in the KO mice (↓8.7%, p = 0.46). KI mice demonstrated a trend 

toward increased osteoclast formation in response to TNF-α, although it did not reach statistical 

significance in our sample (↑50%, p = 0.11, Figure 2.4b).  

Effect of RANKL on formation of osteoclasts from bone marrow derived progenitors from mice 

of each genotype 

In vitro studies on osteoclastogenesis induced by RANKL, performed on bone marrow derived 

progenitors obtained from age and gender-matched KO, WT, and KI mice, yielded similar results 

(Figure 2.5). Notably, osteoclast formation increased in a significant, dose-dependent manner in 

WT and KI cultures, while KO cultures were less sensitive to osteoclastogenic cytokines, 

producing approximately 50% fewer osteoclasts at equivalent doses of RANKL (Figure 2.5b). 

Moreover, KI cultures produced osteoclasts that were greater in individual size than those formed 

in the WT cultures, while KO osteoclasts were smaller than WT (Figure 2.5a).  
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Figure 2.4a. Effect of genotype on induced osteoclastogenesis in p62 KO mice and WT control mice 
treated with TNF-α or saline. Murine TNF-α (1.5μg in 50μL of saline) or the same volume of saline was 
injected once daily for 5 consecutive days into the subcutaneous layer overlaying the calvariae of 2-month-
old KO (n = 11) or WT control female mice (n = 8). On day 6, calvariae were harvested, fixed in 10% neutral 
buffered formalin, processed for histology, and stained for tartrate resistant acid phosphatase activity 
(TRAP). TRAP+ cells with three or more nuclei were counted as osteoclasts and quantified. Results shown 
are the mean ± SEM. * p < 0.05, ** p < 0.005 
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Figure 2.4b. Effect of genotype on induced osteoclastogenesis in p62 P394L KI mice and WT control 
mice treated with TNF-α or saline. Murine TNF-α (1.5μg in 50μL of saline) or the same volume of saline 
was injected once daily for 5 consecutive days into the subcutaneous layer overlaying the calvariae of 2-
month-old KI (n = 10) or WT control female mice (n = 8). On day 6, calvariae were harvested, fixed in 10% 
neutral buffered formalin, processed for histology, and stained for tartrate resistant acid phosphatase activity 
(TRAP). TRAP+ cells with three or more nuclei were counted as osteoclasts and quantified. Results shown 
are the mean ± SEM. * p < 0.05 



www.manaraa.com

 
 

53 
 

 

Figure 2.5a. Effect of genotype and RANKL dose on induced osteoclastogenesis in vitro. Bone marrow derived progenitors obtained from p62 
–/– (KO), wildtype (WT), and p62 P394L (KI) mice were primed with M-CSF for two days then cultured in the presence of varying quantities of M-CSF 
± RANKL for three days. Osteoclasts were then fixed in 10% neutral buffered formalin and stained for tartrate resistant acid phosphatase activity 
(TRAP) and imaged (representative images included). TRAP+ cells with three or more nuclei were counted as osteoclasts and quantified. Note the 
enlarged size of osteoclasts in the KI genetic background. 
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Figure 2.5b. Quantitation of effect of genotype and RANKL dose on induced osteoclastogenesis in vitro. Bone marrow derived progenitors 
obtained from p62 –/– (KO), wildtype (WT), and p62 P394L (KI) mice were primed with M-CSF for two days then cultured in the presence of varying 
quantities of M-CSF ± RANKL for three days. Osteoclasts were then fixed in 10% neutral buffered formalin and stained for tartrate resistant acid 
phosphatase activity (TRAP). TRAP+ cells with three or more nuclei were counted as osteoclasts and quantified. Results, aggregated from 6 
independent experiments (n = 6), are the mean ± SEM. a, b, c, d, e, represent p < 0.05 using one-way ANOVA, Bonferroni corrected. 
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Bone resorption capacity of osteoclasts from mice of each genotype 

To determine whether the osteoclasts from mice of each genotype differed functionally, bone 

resorption was measured from osteoclasts grown on dentin slices.  This analysis was performed by 

our collaborator, Dr. Noriyoshi Kurihara at Indiana University. KO cultures produced functionally 

deficient osteoclasts which generated resorption lacunae totaling approximately one-third the area 

of WT cultures, while KI osteoclasts resorbed area in excess of two fold greater than WT cultures. 

In each instance, KO vs. WT. or KI vs. WT, the effect of p62 alteration had a more profound effect 

on osteoclast function than the effects on osteoclast number (Figure 2.6).  
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Figure 2.6. Effect of genotype on osteoclast formation and activity.  

(Top panel) Representative images of differentiated osteoclasts. Bone marrow derived progenitors 
obtained from p62 –/– (KO), wildtype (WT), and p62 P394L (KI) mice were primed with M-CSF for two days 
then cultured in the presence of 20ng/mL M-CSF and 100 ng/mL RANKL for three days. Osteoclasts were 
fixed in 10% neutral buffered formalin and stained for tartrate resistant acid phosphatase (TRAP) activity. 
TRAP+ cells with 3+ nuclei were counted as osteoclasts. Bone resorption assays (bottom three panels) 
were performed by Dr. Noriyoshi Kurihara at Indiana University (IUPUI). 

(Bottom panel) Resorption lacunae formed by osteoclasts. Bone marrow derived progenitors obtained 
from p62 –/– (KO), wildtype (WT), and p62 P394L (KI) mice were cultured on dentin slides in the presence 
of M-CSF and RANKL for 14 days. Cells were then removed and the dentin slices were stained with acid 
hematoxylin, photographed, and resorption area quantified using ImageJ software (Bottom panel). 
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2.4 Discussion 

Paget’s disease is a common metabolic bone disease associated with exuberant osteoclast 

formation and activity (Roodman and Windle, 2005). Though its etiology has not been precisely 

delineated, it is commonly accepted that there are both environmental and genetic bases for the 

disease. In particular, over twenty independent case reports and epidemiological studies – 

conducted in North America, Europe and Australia – have demonstrated that mutation in the C-

terminal ubiquitin-associated domain of p62 is very highly associated with Paget’s disease (Ralston 

and Layfield, 2012; Chung and Van Hul, 2012). But what is known about the function of p62 

during normal osteoclastogenesis, and how is its function perturbed by such mutations?  

Some attempts to answer these questions have already been made. Specifically, mouse models in 

which p62 is genetically abrogated or mutated to match a common PDB-associated mutation were 

previously generated on separate genetic backgrounds and individually assessed histologically for 

a selection of bone structural and cellular phenotypes (Durán et al., 2004; Hiruma et al., 2008; 

Daroszewska et al., 2011).  

In the present chapter we summarize a series of experiments in which we have united these mouse 

models onto a common genetic background, C57Bl/6J, to eliminate strain-dependent variance, and 

supplemented or re-configured previously conducted experiments on these mice to eliminate 

confounding effects of signaling intermediaries, increase confidence in cell autonomous effects of 

genetic manipulations, improve statistical power, and, ultimately, advance our understanding of 

p62’s effect on bone structure and cellular function. 

We may begin by noting that the genetic ablation of p62 resulted in no statistically appreciable 

differences in skeletal microarchitecture or cellular activity in year-old mice in the absence of 
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pharmacological intervention in vivo or cytokine stimulation in vitro, confirming results previously 

reported using eight-week old p62-/- mice (generated by a separate group, Durán et al., 2004) and 

extending them. This latter point is particular important. That is, the Moscat group, which had 

initially characterized the first p62-/- mouse in 2004, went on to demonstrate that p62-/- mice 

develop mature-onset obesity, systemic glucose intolerance, and insulin resistance (Rodriguez et 

al., 2006). They also intimated, but never published that p62-/- mice exhibit increased bone mineral 

density as they age, implying a possible osteopetrotic phenotype (Rodriguez et al., 2006). In the 

present study, we confirmed the mature-onset obesity phenotype in p62-/- mice, but found no 

statistically significant differences in bone volume from age and gender-matched wildtype mice. 

In contrast, the P394L PDB-associated mutation of p62 resulted in a significant osteopenic 

phenotype under basal conditions, unlike previously reported results (Hiruma et al., 2008; 

Daroszewska et al., 2011). While it is possible that this result is strain dependent, we suspect that 

this discrepancy is better accounted for by the fact that we characterized older (12 to 14 months of 

age vs. 4 month old mice in Daroszewska et al., 2011) and greater numbers of mice (n = 9 KI and 

10 WT vs. n = 4 KI and 3 WT in Hiruma et al., 2008) in the present study. 

In terms of induced-osteoclastogenesis in vivo, our results confirm what has been previously 

published, i.e. that KO mice fail to mount an appropriate osteoclastogenic response to 

pharmacological induction, while removing a potential confounder. More specifically, previously 

published experiments used PTHrP (parathyroid hormone-related peptide) – a prohormone that 

acts only indirectly on cells of the osteoclast lineage – to demonstrate that induced 

osteoclastogenesis was impaired in p62-/- mice (Durán et al., 2004). PTHrP is natively produced 

by osteoblast progenitors and acts in a paracrine and autocrine manner through the PTHR1 

receptor on (1) pre-osteoblasts to enhance their differentiation to mature, matrix-producing 
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osteoblasts, (2) reduce osteoblast and osteocyte apoptosis, and (3) increase production of RANKL 

in cells of this lineage (Martin, 2005). It might be argued that given that their p62-/- mouse was a 

global knock-out, the in vivo effects they demonstrated might, however unlikely, have emerged 

from an osteoblast-specific failure to up-regulate RANKL in response to PTHrP. To remove this 

confounding effect we utilized subcutaneous administration of TNF-α, a direct inducer of 

osteoclast formation (Kobayashi et al., J Exp Med. 2000) and demonstrated a failure to induce 

osteoclastogenesis in KO mice – a result that differed substantially from WT and KI mice.  

These results were confirmed in vitro. Bone marrow derived progenitors from KO cultures failed 

to form osteoclasts as efficiently or as functionally active as WT cultures, confirming what had 

been previously published (Durán et al., 2004), while KI cultures formed robust, hyperactive 

osteoclasts, confirming previous results (Hiruma, et al., 2008; Daroszewska et al., 2011). 

These results are significant for several reasons. First, p62-/- mice develop an obese phenotype that 

it is first evident at approximately 3 to 4 months of age. It has been further suggested that p62 plays 

a critical role in the activation of the RANK-TRAF6-NFκB signaling pathway (Durán et al., 2004). 

Yet genetic knock-out models of: (a) upstream intermediaries in this pathway, including RANKL, 

RANK, TRAF6, and (b) downstream targets such NFκB1 and NFκB2 (when knocked out 

simultaneously), among many others, have a pronounced osteopetrotic phenotype (Kong et al., 

Nature 1999; Dougall et al., Genes Dev 1999; Naito et al., Genes Cells 1999; Iotsova et al., Nature 

Med 1997). That the absence of p62 does not alter bone structure or activity, either before or after 

the development of this phenotype, suggests that either p62 plays a minor role in normal bone 

homeostasis – and, importantly, is likely not the key mediator of RANK-TRAF6 signaling during 

basal conditions – or that a sufficient number of compensatory pathways are active to mask the 

effects of its loss. On the other hand, clear impairment of induced-osteoclastogenesis is evident, 
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both in vivo and in vitro. That our KI mice exhibit a phenotype very similar to knock-out models 

of competitive inhibitors of the NFκB pathway, such as OPG (Bucky et al., Genes Dev, 1998) or 

feedback inhibitors such as CYLD (Jin et al., 2008) – i.e. a demonstrable osteoporotic phenotype – 

strengthens the hypothesis that PDB-associated mutations result in a true physiologic gain of 

osteoclast function. 

To summarize, we have united two important mouse models aimed at elucidating the role of p62 in 

osteoclastogenesis and Paget’s disease of bone on a common C57bl/6J background, and 

characterized the effects of mutation at the p62 locus in vivo and in vitro. Taken together, the 

results of this study beget several important questions. Does p62 play an important role in 

physiologic RANK-TRAF6 signaling or not? Does mutation at the UBA domain amplify NFκB 

signaling, and if so what is the mechanism? Given p62’s multiple domains, what alternative 

pathways might be account for these phenotypes, if any? It is to these questions that we now turn 

in the following chapter. 
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CHAPTER 3 

A GLOBAL INVESTIGATION INTO THE MECHANISMS BY WHICH p62 

MEDIATES OSTEOCLASTOGENESIS 

 

3.1 Introduction 

In the preceding chapter, we focused on defining the phenotypes of two important mouse models 

generated to help elucidate the role played by the multifunctional adaptor protein p62 during 

osteoclastogenesis and in the pathophysiology of Paget’s disease of bone (PDB). These models – 

in which p62 was genetically ablated (p62-/- or KO) or mutated (p62 P394L or KI) to match a 

common mutation found in familial PDB patients – were backcrossed onto a common genetic 

background, C57Bl/6J. Isolated bones were then subjected to careful histomorphometric 

measurements, and bone marrow derived osteoclast precursors were characterized in vitro.  

Experiments conducted on p62-/- mice suggest that p62 is dispensable for in vivo basal osteoclast 

formation, absent any external stimuli or cytokines. At the same time, osteoclastogenesis induced 

by any of the cytokines tested or published – TNF-α, PTHrP, or RANKL – appears to be 

significantly impaired in these mice and their cells, which suggests that p62 may yet play an 

important role in induced osteoclast differentiation and activation. 
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Bones from p62 P394L mutant mice, on the other hand, reveal an osteopenic phenotype under 

basal conditions, with increased trabecular spacing, and decreased bone volume and trabecular 

number. Although impaired osteoblast function cannot be ruled out as a possible explanation, 

subsequent experiments in which the cytokine-induced response was characterized suggest that 

overly exuberant osteoclastogenesis plays an important role in this process. These results further 

strengthen the notion that p62 plays a complex mediatory role during osteoclastogenesis and that 

the mechanisms underlying this regulation merit further investigation. 

While several hypotheses have been proposed to explain this role, the one that has gained the 

broadest acceptance asserts that p62 forms a complex with TRAF6 to integrate and transduce 

RANKL signaling, leading to the degradation of the NFκB inhibitor, IκB, and the nuclear 

translocation and activation of NFκB (Figure 3.1). In chapter one, we elaborated on the lines of 

evidence linking p62 to the positive regulation of TRAF6 signaling and how this may pertain to 

osteoclastogenesis (Figure 1.6). We return to this discussion now, investigating its experimental 

bases more closely. 
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Figure 3.1. Overview of the RANK-TRAF6-p62-NFκB signaling pathway hypothesis. 

RANKL binds to its receptor RANK in an interaction antagonized by OPG. On receptor stimulation, TRAF6 
associates with RANK, and p62 with TRAF6. Lys63-linked autoubiquitination of TRAF6 is catalyzed by its 
intrinsic E3 ubiquitin ligase activity. Through its N-terminal PB1 domain p62 binds aPKC, stimulating the 
activation of IκB kinaseß (IKKß) as does activation of the TAB1-TAB2-TAK1 complex by binding 
ubiquitinated TRAF6. Phosphorylation of IκB by the activated IKKß complex, and subsequent Lys48-linked 
polyubiquitination, leads to 26S proteasomal degradation of IκB, permitting NFκB to enter the nucleus and 
activate target gene expression. Adapted from Layfield, The molecular pathogenesis of Paget disease of 
bone, Expert Rev Mol Med. 2007 Oct 1;9(27):1-13. 

 

  

Abbreviations: 
 
aPKC, atypical protein kinase C  
 
IkB, inhibitor of kB  
 
IKK, IkB kinase  
 
NF-kB, nuclear factor kB  
 
OPG, osteoprotegerin  
 
RANK, receptor activator of NF-
kB 
 
RANK-L, RANK ligand  
 
TRAF6, TNF receptor-
associated factor 6  
 
Ub, ubiquitin 
 
VCP, Valosin-containing protein 
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As noted earlier, Durán and colleagues provided the first evidence that p62 plays a role in induced 

osteoclastogenesis by: (a) demonstrating that p62 is up-regulated and remains elevated during 

RANKL-mediated osteoclast formation, (b) generating p62-/- mice, that despite being 

histomorphologically indistinguishable from wildtype mice at 6-8 weeks of age under basal 

conditions,  demonstrated significantly decreased osteoclast formation and increased bone volume 

in response to PTHrP, and (c) culturing p62-/- osteoclast progenitors that demonstrated inefficient 

up-regulation of NFATc1 and poor responsiveness to M-CSF and RANKL (Durán et al., 2004). 

Durán and colleagues proposed a model in which p62-/- mice are unable to form a critical 

signaling complex involving TRAF6, p62, and aPKC, which results in impaired NFκB signaling, 

supported by the following evidence (Figure 4, Durán et al., 2004). 

Experimentally, the authors observed that nuclear NFκB-DNA binding, as measured by EMSA, 

was diminished in the absence of p62, not upon initial stimulation with M-CSF and RANKL, but 

only after a period of days. To explain this, they reasoned that p62 contributes to this signaling 

pathway only later in the cycle of RANKL-mediated differentiation, during which p62 is itself up-

regulated. Next, they observed changes in another surrogate for NFκB activity, phosphorylated-

IκB (which is phosphorylated, then ubiquitinated and degraded via the 26S proteasome). P- IκB 

levels were found to be diminished in KO cells after 6 days of RANKL treatment compared to WT 

cells. The authors explained that this finding may be have been due to deficient formation of a 

complex between TRAF6 and p62, which co-precipitated within 10 minutes of RANKL treatment, 

and between p62 and the atypical protein kinase C member, aPKCζ, which co-precipitated after 6 

days of RANKL treatment. The relevance of this potential pathway is unclear, however, for as the 

authors point out “aPKCζ-/- BMDMs do not have osteoclastogenic defects” (Durán et al., 2004; 

Leitges et al., 2001).  
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With respect to Paget’s disease of bone, the authors next provided the first evidence that PDB-

associated mutations enhance NFκB signaling by transfecting 293 cells with either wildtype or 

P392L mutant expression vectors and a κB dependent reporter and assessing for luciferase activity. 

Interestingly, they observed that NFκB transcriptional activity was twice as high in cells in which 

mutant p62 was overexpressed compared to those in which wildtype p62 was overexpressed 

(Figure S1, Durán et al., 2004). Notbaly, this experiment has since served as the archetype for at 

least five subsequent published analyses that link PDB-associated mutations to enhanced NFκB 

signaling. 

In 2006, for example, Yip and colleagues transiently transfected RAW264.7 cells stably expressing 

p62-WT, p62-UBA domain mutant (p62-ΔUBA), or pcDNA3.1 control with an NFκB luciferase 

reporter for 24 hours, then stimulated cells with 100 ng/ml of RANKL for 10 and 40 hours, before 

harvesting them and measuring luciferase activity. Interestingly, NFκB transcriptional activity 

peaked at 10 hours, then fell back to near unstimulated levels at 40 hours, in cells of all 3 groups 

(Figure 5A, Yip et al., 2006). Here, overexpression of wildtype p62 was associated with persistent, 

significant decreases in NFκB transcriptional activity in response to RANKL compared to control 

from the outset. Moreover, ectopic expression of p62-ΔUBA domain mutant protein appears to 

have suppressed this inhibition and even enhanced NFκB transcriptional activity compared to 

control in response to RANKL (Yip et al., 2006).  

Using a similar model, reports in 2006 and 2009 demonstrated that ectopic expression of wildtype 

p62 impaired NFκB transcriptional activity compared to control, whereas overexpression of 4 

different PDB-associated mutations (K378X, P392L, E396X in one study; P364S, K378X, P392L 

in the other) each individually only partially suppressed this inhibition compared to control after 24 

hours of treatment (Figure 3, Rea et al., 2006; Figure 6, Rea et al., 2009). These findings were 
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corroborated in a similar manner by Najat and colleagues for a different mutant (A381) that exerts 

only nominal effects on ubiquitin binding (Figure 6, Najat et al., 2008, not included) and by Wright 

and associates in the absence of RANKL stimulation in known UBA domain mutants, E396X and 

G425R, but not for a non-UBA domain mutant, S349T (Figure 1, Wright et al., 2013). 

Finally, in an underappreciated report published in 2009, Chamoux and associates used 

immunofluorescence and Western blot to probe the association between NFκB transcriptional 

activity and p62. In human osteoclasts that were either left un-transfected or transfected with 

empty vector, they demonstrated: (a) that p50 (an NFκB subunit) was detectable both in the 

cytoplasm and nucleus under basal conditions, (b) that p50 aggregated exclusively in the nucleus 

after 30 minutes of RANKL stimulation, and (c) that IκB (NFκB’s inhibitor) levels fell at 

approximately 15 minutes of RANKL stimulation. In contrast, in human osteoclasts 

overexpressing wildtype p62, p50 levels were “barely detectable before or after stimulation” and 

these cells had significantly lower levels of IκB that dropped even further with stimulation. Finally, 

osteoclasts overexpressing the PDB-associated P392L p62 mutant demonstrated high levels of 

nuclear p50 staining and IκB under basal conditions, both of which remained essentially 

unchanged after RANKL stimulation (Figure 8, Chamoux et al., 2009).  

To summarize, a pioneering early study demonstrated that ablation of p62 was associated with 

diminished NFκB-DNA binding only after 24 hours or more of RANKL stimulation, and that 

overexpression of a common PDB-associated mutant resulted in increased NFκB transcriptional 

activity compared to wildtype (Durán et al., 2004). In contrast, several subsequent studies have 

demonstrated that ectopic expression of: (a) wildtype p62 is associated with inhibited NFκB 

transcriptional activity compared to control, (b) most PDB-associated p62 mutants suppress this 

inhibition back to control levels or higher, and (c) that this inhibition (and suppression of 
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inhibition) may be detected in the absence of RANKL treatment, or in its presence after 4, 10, 24 

and even 40 hours (Yip et al., 2006; Rea et al., 2006; Najat et al., 2008; Rea et al., 2009; Wright et 

al., 2013). Discrepancies in these results raise significant questions. Is p62 required for NFκB 

transcriptional activity in differentiating osteoclasts or not? What are the kinetics of this 

regulation? Why is overexpression of wildtype p62 associated with impaired NFκB transcriptional 

activity in so many models? Are additional binding partners required to mediate this inhibition? 

Finally, are models in which p62 is overexpressed appropriate for drawing conclusions about what 

occurs physiologically? On this last question, we maintain that results in at least one study cast 

some doubt on the suitability of these models, suggesting that overexpression of p62 or PDB-

associated mutants may alter NFκB signaling in a non-physiologic manner (Chamoux et al., 2009). 

Taken together with additional hypotheses proposed to explain p62’s role in osteoclastogenesis 

outside of the NFκB narrative – including preferential activation of downstream kinases (Hiruma et 

al., 2008), autophagy (Daroszewska et al., 2011), and or the KEAP1/NRF2 antioxidant response 

(Wright et al., 2013) – these gaps in our knowledge have prompted the present study. 

In this chapter, we describe our efforts to assess the mechanisms by which p62 regulates 

osteoclastogenesis in an unbiased and global manner. Specifically, we employed gene expression 

profiling via DNA Microarray paired with commercial and open source pathway analysis tools to 

identify critical transcriptional regulators and signaling pathways that are activated and repressed 

during RANKL-mediated osteoclastogenesis and determine how these are altered, both 

qualitatively and quantitatively, when p62 is knocked-out or mutated as in PDB.  
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3.2 Methods 

Mouse colonies and genotyping 

First, we established independent colonies of p62-/- (KO), p62 P394L/P394L (KI), and wildtype 

(WT) controls, with our loci of interest backcrossed onto the C57Bl/6J background for at least 6 

generations to generate congenic strains, as detailed in chapter two. Mouse tail DNA was used for 

genotyping by PCR. KI mice were genotyped using a pair of primers that flank the introduced loxP 

site: sense (exon 7): 5`-ACT CCA GTC TCT ACA GAT GCC AG-3` and antisense (intron 7): 5`-

GTT GCC AAG ACT AGA CAG GAC AGG-3`, yielding a product of 182 bp for the WT allele 

and 226 for the p62-P394L KI allele. KO mice were genotyped using the following primers: p62 

(1822-1845): GCT AAC AAA ATG AAG CCA GAT GGG, p62 (2222-2199): GCC TGG CAT 

CTA AGT TGT TCT GAG, and PGK (353-332): CTGA GCC CAG AAA GCG AAG GAG, 

yielding a product of 401 bp for the WT allele and 583 bp for the p62 -/- allele. 

 

Microarray pipeline 

Next, we harvested hindlimbs from each of 6 age and gender-matched mice (mean age of each 

group: 4 months; range: 3 to 7 months) for each of the 3 aforementioned genotypes, KO, WT, and 

KI. Hindlimbs were flushed of bone marrow, red blood cells were lysed (ACK buffer), and 

remaining cells were resuspended in conditioning media (α-MEM supplemented with 10% 

Gemcell FBS + 1% antibiotic), and cultured overnight (37°C, 5% CO2) to select for non-adherent 

hematopoietic precursors. 
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On the following day, cells were pooled by genotype then subjected to magnetic antibody cell 

sorting (MACS, Miltenyi) to enrich cell populations for CD11b+ osteoclast precursors of the 

monocyte lineage. To generate osteoclast precursors, cells were re-suspended in conditioning 

media supplemented with macrophage colony stimulating factor (M-CSF, 20ng/mL) and split into 

six 60mm plates at a concentration of 3 x 10
6
 cell/mL (Cellometer) and volume of 4 mL/plate. This 

yielded a total of 6 plates per genotype (n = 3 experimental replicates and n = 3 control replicates). 

Two days later, floating cells were discarded, and a fresh bolus of 20ng/mL M-CSF in conditioning 

media was added, followed 12 hours later by the addition of a 100ng/mL bolus of RANK-ligand 

(the primary osteoclastogenic cytokine, receptor activator of NFκB ligand or RANKL) or volume 

equivalent vehicle control, as appropriate. Cells were placed back into the incubator for 8 hours, at 

the end of which total RNA from each plate was obtained using Trizol (Invitrogen). The resulting 

18 vials of Trizol + cells were frozen at -80°C and submitted to the VCU Molecular Diagnostics 

Core for RNA purification, reverse transcription, processing, hybridization and scanning on the 

Affymetrix genechip platform (Mouse genome 430A 2.0 array, Affymetrix).  

In this manner, each replicate came from a separate pool of cells that were biologically related, but 

not identical. The Molecular Diagnostics Core then generated RNA quality control measures and 

raw .CEL files for each of the 18 scanned arrays, and submitted them to the Windle lab for data 

processing and analysis as described below (Figure 3.2). 
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Figure 3.2. Pipeline for microarray experiment. Abbreviations: WT, wildtype; KO, p62 -/-; KI, p62 P394L; 

C, control; R, RANKL treated; 1, 2, 3 replicate arrays. 
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Pre and post-processing, volcano plots, and threshold selection 

The Affymetrix Mouse genome 430A 2.0 genechip is a single array that contains over 22,600 

probe sets representing transcripts from approximately 14,000 mouse genes. For each of these 

probe sets, 11 pairs of oligonucleotide probes are used to measure the transcription level of each 

sequence on the array. Each of these probes consists of 25-mers that are perfect matches for target 

mRNA sequences. 

The treated and untreated RNA samples we generated were subjected to the Affymetrix pipeline by 

the VCU Molecular Diagnostics Core facility. RNA was initially reverse transcribed to cDNA, 

then in vitro transcribed into cRNA, which was fragmented, biotin-labeled, and washed over the 

Affy chip, facilitating cRNA-oligo hybridization. Areas of increased hybridization accumulate 

biotinylated cRNA, which was then bound by a fluorescent dye in the next wash over the genechip. 

Subsequent fluorescent scan of the chip provided a fluorescence value for each probe that is 

directly related to specifically hybridized cRNA abundance. From this scan we infer the relative 

abundance of specific mRNA sequences, and thereby obtain a snapshot of the transcriptome – and 

in the case of our experiment, how the transcriptome of osteoclast progenitors changes with p62 

genotype and RANKL treatment. 

To summarize the probes into a probe set, deal with the various sources of noise (e.g. non-specific 

binding of cRNA to probes, processing effects such as deposits left after wash stages, or optical 

noise from the scanner) and technical variation (e.g. due to slight discrepancies between 

hybridization length, sample volume,  or other processes for each array that lead to scaling 

differences between fluorescence intensity levels), we made use of the gcRMA algorithm as 

implemented on the Bioconductor software package in the R statistical programming environment.  
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The primary comparisons made in the present study were mean intensity data for RANKL-treated 

cells normalized by intensity of vehicle control treated cells, by genotype. Log2 transformed data 

were filtered for present-marginal-absent calls (only probe sets for which 3 of 3 replicates were 

present were retained), and pairwise p-values and real-space fold changes were calculated using 

two-tailed t-tests via Microsoft Excel. To correct for multiple hypothesis testing in our large data 

sets, we used the C++ program QVALITY to calculate the false discovery rate, q, which 

corresponds to the probability that a given observation is drawn from the null distribution (Kall et 

al., 2009). Next we performed a preliminary visualization of our data using volcano plots, in which 

biological fold change data (fc) between RANKL and vehicle treated samples is plotted on the x-

axis against the false discovery rate (q) on the y-axis for all three genotypes. This facilitated a 

broad view of the data and provided a sense of the extent to which setting different cut-offs for 

further analysis (by these surrogates for biological and statistical significance, respectively) would 

capture or lose important blocks of data. 

After examining multiple thresholds for significance in fold change data and false discovery rates, 

we set thresholds at fc ≥ 1.3 and q ≤ 0.11, respectively. These appear, at face value, to be relatively 

relaxed criteria. We reasoned, however, that there may be constellations of genes that while only 

altered modestly individually, can, in aggregate, produce significant biological effects. 
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Estimation of data quality before and after processing, hybridization, and analysis  

Microarray technology provides a powerful tool for defining gene expression profiles in many 

physiological and pathophysiological conditions. Yet our conviction for the validity of these 

profiles and confidence in their biological interpretation are tempered by the fact that many sources 

of variation and bias, or noise, can obscure true effects, or signal. To quantify confidence in 

microarray results, and if need be, repeat experiments, several quality control measures were 

quantified using the arrayQualityMetrics Bioconductor package in the R programming 

environment. In the present experiment neither pre-processing errors, such as RNA contamination 

or degradation, nor concurrent errors, such as unacceptably low efficiency in amplification, reverse 

transcription, or hybridization, were problematic in control or RANKL-treated samples (Figures 

3.3, 3.4). Moreover, there is strong evidence that the individual arrays cluster by both experimental 

genotype and treatment with RANKL or vehicle, strongly suggesting that the experimental effects 

are much larger than any noise in the experiment. More specifically, in a heatmap showing relative 

distance between normalized arrays (Figure 3.5), no single array was found in which the sum of 

distances to all other arrays was beyond the 95% confidence interval of the distribution of the sums 

for all arrays (i.e. there were no outliers). As a final quality control measure, we investigated the 

signal intensity distributions of our normalized arrays, and observed that there were no outliers 

using the Kolmogorov-Smirnov test between each array’s distribution and the distribution of the 

pooled arrays (Figure 3.6). 

Taken together, these results indicate that sources of noise were relatively minimal in our 

experiment, while the experimental effects of both genotype and treatment were comparatively 

large and distinct. 
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Figure 3.3a. Quality control measures for control (non-RANKL treated) data.  
Abbreviations: WT, wildtype; KO, p62 -/-; KI, p62 P394L; C, control; 1, 2, 3 replicate arrays. 
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Figure 3.3b. Quality control measures for RANKL-treated data. 
Abbreviations: WT, wildtype; KO, p62 -/-; KI, p62 P394L; R, RANKL treated; 1, 2, 3 replicate arrays. 
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Figure 3.4. General quality control measures. 

(Left panel) RNA degradation plot. This plot demonstrates the intensity trend over the 

probes of each probeset, ordered from the 5` to 3` ends of the gene. Probesets are 

averaged to produce a single 5` to 3` trendline for each array. Affymetrix arrays are 3` 

biased, so it is expected that the RNA will show degradation and therefore less 

hybridization towards the 5` end of the probeset. As such, a positive slope is normal. An 

aberrant slope for a single array or arrays could indicate that RNA was degraded or 

otherwise mishandled, but there is no evidence of this in our samples. 

  

(Right panel) Scaling factors and housekeeping genes. Different chips are separated 

by horizontal grey lines in the plot. The numbers on the left report the number of 

probesets with present flag, and the average background on the chip. The blue region in 

the middle denotes the area where scaling factors are less than 3-fold of the mean scale 

factors of all chips. Bars that end with a point denote scaling factors for the chips. The 

triangles denote beta-actin 3`:5` ratio, and open circles are GAPDH 3`:5` ratios. If the 

scaling factors or ratios fall within the 3-fold region (1.25-fold for GAPDH), they are 

colored blue, otherwise they are colored red and the deviant chips are therefore easy to 

select (by their red coloring). Here, all scaling factors and housekeeping genes are within 

the acceptable range. 
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Figure 3.4. General quality control measures. 
Abbreviations: WT, wildtype; KO, p62 -/-; KI, p62 P394L; C, control; R, RANKL treated; 1, 2, 3 replicate arrays. 
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Figure 3.5. Between-array sample heatmap. 

Patterns in this plot indicate clustering of the arrays by the biological experimental factors (genotype and 
treatment). The distance, dab, between two arrays a and b, for example, is computed as the mean absolute 
difference (L1-distance) between the data of the arrays (using the data from all probes without filtering). 
Outlier detection was performed by looking for arrays for which the sum of the distances to all other arrays, 
Sa = Σb dab was exceptionally large. No such array outliers were detected in this dataset. Abbreviations: 
WT, wildtype; KO, p62 -/-; KI, p62 P394L; C, control; R, RANKL treated; 1, 2, 3 replicate arrays. 
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Figure 3.6. Signal intensity distributions of arrays.  

(Top panel) Each box corresponds to one array. Because the boxes 
have similar positions and widths no experimental problems were 
suspected. Outlier detection performed by computing the 
Kolmogorov-Smirnov statistic Ka between each array's distribution 

and the distribution of the pooled data confirmed this suspicion. 

(Left panel) A bar chart of the Kolmogorov-Smirnov statistic Ka, the 
outlier detection criterion from the picture above is shown to the left. 
Based on the distribution of the values across all arrays, a threshold 
of 0.0268 was determined, which is indicated by the vertical line. 
None of the arrays exceeded the threshold and was considered an 
outlier. Abbreviations: WT, wildtype; KO, p62 -/-; KI, p62 P394L; C, 
control; R, RANKL treated; 1, 2, 3 replicate arrays. 
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Data visualization by principal component analysis and unsupervised clustering 

Having gained confidence that our data was not confounded by the various sources of noise, our 

next task was to visualize our microarray data, identify meaningful underlying experimental 

variables, and explore patterns of relationship between them. To do this we began with common 

techniques, such as dimension reduction through principal component analysis and investigation of 

similarities via cluster analysis.  

Principal component analysis (PCA) is a widely used statistical tool used to reduce the 

dimensionality of large data sets that consist of many interrelated variables, while simultaneously 

keeping as much of the variation present in the data set as possible. This is achieved by 

transforming the original data into a new set of variables or principal components (PC) that are 

ordered such that the greatest proportion of variance is captured in the first PC, followed by the 

second PC, and so on. To illustrate how PCA works we may take an example from the literature 

(Agilent technologies): 

Say that you measure 10,000 genes in 8 different patients. These values could form a 

matrix of 8 x 10,000 measurements. Now imagine that each of these 10,000 genes is 

plotted in a multi-dimensional on a scatter plot consisting of 8 axes, 1 for each patient. The 

result is a cloud of values in multi-dimensional space. To characterize the trends exhibited 

by this data, PCA extracts directions where the cloud is more extended. For instance, if the 

cloud is shaped like a football, the main direction of the data would be a midline or axis 

along the length of the football. This is called the first component, or the principal 

component. PCA will then look for the next direction, orthogonal to the first one, reducing 

the multidimensional cloud into a two-dimensional space. The second component would be 

the axis along the football width. In this particular example, these two components explain 

most of the cloud’s trends. In a more complex data set, more components might add 

information about interesting trends in the data. 
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It is common to complement PCA with additional techniques, and in particular, those whose 

primary aim is data clustering. If the aim of ordination in reduced space via PCA is to highlight 

general gradients and patterns, the aim of exploratory cluster analysis is to organize data into 

similar groups, such that items within a cluster are closer, or more similar, to one another than they 

are to members of other groups – in short, to discover potential patterns of fine relationship. 

Typically, clustering is performed in the absence of definitive information about which data should 

sort into which group, how similarity between groups is measured, or even how many groups there 

should be. Approaches can broadly be divided into hierarchical, which seeks to build hierarchies of 

clusters, or nonhierarchical. Hierarchical clustering methods can be further divided into approaches 

that are agglomerative, in which each data point begins as its own observation or cluster, and pairs 

of clusters are merged as one proceeds up the hierarchy, or divisive, which proceeds in the opposite 

direction, i.e. all data start in one cluster and are split recursively down the hierarchy. In the present 

experiment, we used R to conduct an unsupervised, agglomerative clustering algorithm which 

minimizes the total within-cluster variance (Ward’s criteria) on our microarray data. Finally, we 

made extensive use of Microsoft Excel and the TIGR Multiexperiment Viewer 

(http://www.tm4.org/mev.html) for generation of fold-change and signal intensity plots and 

heatmaps. 

 

Gene annotation enrichment analysis using DAVID, gene ontology, and Fisher’s exact test 

To gain an appreciation for the meanings and themes that were most heavily represented in our 

gene lists, we employed gene annotation enrichment techniques. The Database for Annotation, 

Visualization and Integrated Discovery (DAVID) is an open access, web-based program that 
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provides investigators a set of functional annotation tools that facilitate understanding of the 

biological meanings behind gene lists (Huang et al., 2009).  

Typically, a user submits an enriched gene list to the web server, which then retrieves the most 

significant themes, including: Gene Ontology (GO) terms, protein-protein interactions, functional 

domains, disease associations, bio-pathways, sequence general features, homologies, and so on. 

Gene ontology ascription, among the most important tools for gene expression set analysis, is not 

done in ad hoc manner. Rather, there is a formal Gene Ontology (GO) project, a collaborative 

effort aimed at providing consistent descriptions of gene products across different databases 

(http://www.geneontology.org). The GO project began as collaboration between databases for 

model organisms drosophila, saccharomyces, and mouse in 1998, and has “grown to include many 

databases, including several of the world's major repositories for plant, animal and microbial 

genomes” since then. The basic approach taken by the GO project is to describe gene products in 

terms of their associated (a) cellular component, i.e., the relevant part or parts of a cell, or its 

extracellular environment, (b) elemental molecular function, i.e., activities of a gene product at the 

molecular level, such as binding or catalysis, and (c) biological processes, or “operations or sets of 

events with a defined beginning and end, pertinent to the functioning of integrated living units: 

cells, tissues, organs, and organisms.” An example given by the consortium is the gene product 

cytochrome c, which “can be described by the molecular function term oxidoreductase activity, the 

biological process terms oxidative phosphorylation and induction of cell death, and the cellular 

component terms mitochondrial matrix and mitochondrial inner membrane.” We should also note 

that GO does not purport to cover all functions or components that are unique to mutants or 

disease, sequence domains, protein-protein interactions, and so on. This explains, in part, why 

http://www.geneontology.org/
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DAVID and other software programs supplement GO terms with additional enrichment elements 

as noted above. 

Now, having associated GO and other biologically relevant terms to a user-specified gene list of 

prescribed length, DAVID calculates the statistical significance of this association using a 

modified Fisher’s exact test called the EASE score – to determine levels and patterns of 

enrichment. A hypothetical example modified from the DAVID website helps clarify how this is 

done.  

Let us assume that in the human genome background (30,000 genes total), a total of 40 have been 

deemed to participate in the NFκB signaling pathway, based upon findings reported in the 

literature. Now let us assume that in a given gene list, 3 out of 300 have been associated with 

NFκB signaling through DAVID’s retrieval of GO terms. We pose the question – is our list 

enriched for the NFκB signaling pathway, i.e., is 3/300 more than we would expect to find by 

random chance alone compared to the human background of 40/30,000? This question is answered 

by the use of a 2x2 contingency table, as follows: 

 

The Fisher’s exact p-value is calculated by the hypergeometric distribution (Wikipedia), expressed 

by the following equation: 

Fisher's Exact Test User Genes Background Totals

In Pathway a = 3 b = 40 a + b = 43

Not In Pathway c = 297 d = 29960 c + d = 30257

Totals a + c = 300 b + d = 30000 n = a + b + c + d = 30,300
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where ( 
 
) is the binomial coefficient and ! indicates the factorial operator. 

Assuming the null hypothesis, we would obtain this result approximately 8 times in one thousand 

(p-value = 0.008), using the Fisher’s exact test, and approximately 6 times in one hundred (p = 

0.06), using DAVID’s more conservative EASE score (where the equations and terms identical to 

those in Fisher’s exact score except for a, which becomes a` = a-1). In this example, DAVID’s 

EASE score exceeds the common threshold of p = 0.01, suggesting that the user-generated list is 

not enriched for the NFκB signaling pathway any more than we would expect by random change 

alone. 

 

Upstream regulator analysis by Ingenuity Systems 

Ultimately, gene annotation enrichment such as that provided by DAVID provides very valuable 

information about gene ontologies including cellular components, molecular function, basic 

biological processes, and pathways that are over-represented in user-generated lists. However, 

what is often desired by investigators is information about whether changes in gene expression are 

consistent with activation or inhibition to signaling pathways. Let us return to the simplified 

example above to illustrate this issue. 
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Say that in a subsequent assay, a user-generated list (once again 300 genes long) is submitted to 

DAVID. This time 10 of the 300 genes are associated with the NFκB signaling pathway, which 

corresponds to a DAVID EASE score of p = 1.1 x10
-9

. This result suggests that the NFκB 

signaling pathway is unmistakably enriched in the data set, but it is silent as to whether NFκB is 

activated or inhibited in the gene expression data set. It may be, for example, that among the 10 

genes, 5 are up-regulated with respect to control, and, in the literature, known to be induced by 

NFκB signaling, and the other 5 genes are also up-regulated in the data set, but, according to the 

literature, known to be repressed downstream of the NFκB signaling cascade. In this instance, 

statistical significance alone misses the fact that NFκB signaling may be neither activated nor 

inhibited in this experiment, on balance.  

What is needed, then, is a tool that retains DAVID’s ability to ascribe or retrieve GO terms and 

pathways to genes in gene lists, and attributes statistical significance about that enrichment, but, in 

addition, permits a prediction to be made about the net activation or inhibition status of these terms 

and pathways, when appropriate. This is precisely what Ingenuity Systems, a private corporation 

that provides bioinformatics solutions for researchers in the biological and life sciences, has 

created with its novel IPA upstream regulator analysis (URA) tool. 

Briefly, this tool (a) can predict upstream regulators from gene expression data and (b) determine 

whether those regulators are likely to be activated or inhibited based on a cumulative, regularly -

updated and curated knowledge base, culled from the literature. In practice two independent values 

or metrics are reported. First, a p-value of overlap which corresponds to a modified Fisher’s exact 

test similar to DAVID’s EASE score is provided, giving a statistical assessment of the significance 
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of enrichment of a particular regulator. Next, an independently generated activation z-score is 

given, which (IPA’s “A Novel Approach to Upstream Regulators” whitepaper): 

…indicates the degree of consistent agreement or disagreement of the actual versus 

predicted direction of change among the downstream gene targets. A prediction about the 

state of the upstream regulator, either activated or inhibited, is made based on the z-score. 

For example, if most of the targets of an upstream regulator are expected from the literature 

to be up-regulated and there is an observed increase in their measured gene expression in 

the analyzed dataset, this would lead to a positive activation z-score and an “activation” 

prediction. Conversely, if most of the genes were expected to be up-regulated and the 

observed expression was down-regulated (or vice-versa), this anti-correlation would lead to 

a negative z-score and a prediction of “inhibited” for the upstream regulator. 

In the present project, we have made use of both DAVID’s functional analysis and IPA’s URA to 

analyze gene lists generated from the pipeline described above. Because these values are provided 

in number alone, we have used Microsoft Excel to generate bar graphs to illustrate statistical and 

biological significance in offset horizontal bar graphs. For statistical significance, modified 

Fisher’s exact scores are represented by the negative log of the p-value, such that increased 

significance corresponds to longer bar lengths. For biological predictions about activation state for 

these upstream regulators, we have labeled offset bars, whose length also corresponds to the 

strength of the prediction, either orange (activated) or blue (inhibited). Finally, we have included 

detailed graphical depictions of selected URA pathways (with gene target abbreviations and fc 

levels) for future reference and experimentation in the appendices at the end of this dissertation. 

 

Pattern determination 

Venn diagrams were generated using the Venny web-based program found at the following 

website: (http://bioinfogp.cnb.csic.es/tools/venny/index.html (Oliveros, 2007).  

http://bioinfogp.cnb.csic.es/tools/venny/index.html
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3.3 Results 

Experiment overview 

As noted above, we generated osteoclast precursors using M-CSF (20ng/mL) on MACS sorted 

CD11b+ murine bone marrow derived hematopoietic precursors obtained from age and gender-

matched p62-/- (KO), p62+/+ (WT), and p62 P394L/P394L (KI) mice (Figure 3.2). We then 

treated the cells with a 100ng/mL bolus of the primary osteoclastogenic cytokine, receptor 

activator of NFκB ligand (RANKL) or volume equivalent vehicle control. After 8 hours, Trizol-

generated total RNA was prepared, processed, and scanned on the Affymetrix genechip (Mouse 

genome 430A 2.0 array, Affymetrix) by the VCU Molecular Diagnostics Core, who generated 

RNA quality control measures and raw .CEL files for each of 18 scanned arrays (2 treatments x 3 

genotypes x 3 replicates/genotype), and submitted them to the Windle lab for data processing and 

analysis as described. 

 

Principal component analysis and unsupervised clustering suggest that array data cluster by 

genotype and treatment 

Our first task after confirming that our data passed quality control standards (Figures 3.2 through 

3.6) was to visualize our microarray data, identify meaningful underlying experimental variables, 

and explore patterns of relationship between them. We began this analysis with a more global view 

using two common techniques, principal component analysis and unsupervised clustering.  

As noted earlier, the goal of principal component analysis (PCA) is to reduce the dimensionality of 

large data sets, and thereby gain a general appreciation for gradients and patterns in the data. In our 



www.manaraa.com

 
 

88 
 

data set, PCA showed that, by-far, the greatest variance in data (first principal component) 

corresponded very well with genotype, with wide separation between WT, KO, and KI on the first 

principal component (Figure 3.7, top panel). The second, orthogonal axis, which corresponds to the 

next largest amount of variance in the data, corresponds to treatment with RANKL vs. controls 

(Figure 3.7, top panel).  

Unsupervised clustering results bolstered our confidence in these results, showing that array 

replicates agglomerated tightly by genotype and replicate, as expected, within clusters (Figure 3.8). 

As noted in the methods, replicates were generated from cells pooled at the level of individual 

plates, but the RNA obtained from each plate was not pooled (i.e. the samples were not simply 

technical replicates), which further bolsters our confidence in these results. What was unexpected 

was the close proximity between the KI and KO clusters (Figure 3.8). We had assumed that the 

broad pattern of genotypic expression might parallel what we had previously seen in our 

phenotypic characterization studies. That is, we expected that knocking out p62, a multifunctional 

adaptor which has many binding partners that play roles in many important signaling pathways and 

leads to a clear loss of osteoclast function in vitro – would result in a significant divergence in gene 

expression between KO and WT cells. That much is clear from the distance between clusters in 

Figure 3.8. On the other hand, introduction of a single amino acid substitution resulting in an 

increase in osteoclast and function might be expected to result in gene expression changes that 

cluster closer to WT than to KO. That this was not so, i.e. that KI and KO clustered more closely to 

one another than to wildtype, suggests that the p62’s UBA domain plays an important role in gene 

expression in differentiating osteoclast progenitors. To gain a deeper understanding of how this 

might occur, we will now look more closely at these gene expression profiles. 
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Figure 3.7. Principal component analysis and scree plot.  

Abbreviations: WT, wildtype; KO, p62 -/-; KI, p62 P394L; C, control; R, RANKL treated; 1, 2, 3 replicate 
arrays.  

(Top panel) The first principal component, PC1 (horizontal axis), corresponds best to genotype, while the 
second principal component, best corresponds with treatment (RANKL or vehicle control), suggesting that 
this is a relatively low noise experiment with large experimental effects. 

(Bottom panel) Scree plot of variance vs. principal component demonstrates that the variation explained by 
each principal component drops dramatically after PC1. 
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Figure 3.8. Cluster dendrogram.  

Abbreviations: WT, wildtype; KO, p62 -/-; KI, p62 P394L; C, control; R, RANKL treated; 1, 2, 3 replicate 
arrays.  

Unsupervised cluster dendrogram (Ward’s criteria) confirms that arrays cluster by genotype and treatment. 
Intriguingly, KO and KI subgroups clustered in much closer proximity to one another than to WT. 
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Knock-out and P394L mutation of p62 differentially alter gene expression profiles of bone 

marrow derived osteoclast progenitors treated with RANKL  

We next turned our attention to changing our raw data into interpretable gene expression profiles. 

Given that we were most interested in the biological processes underlying osteoclastogenesis, we 

focused primarily on the induction of genes in response to RANKL normalized by vehicle treated 

controls in each of the three genotypes, WT, KO, and KI. Before doing so, however, we had to 

grapple with the perennial question of what it means for a gene to be differentially expressed. On 

the one hand, a gene may be termed differentially expressed in the language of statistics if its 

expression levels change systemically from one condition to the next (p-value, or, in the case of 

large data sets, false discovery rate or q-value), irrespective of how small the biological difference 

(fold change, fc) might be. On the other, a gene is likely to be called differentially expressed, in the 

language of biology, only if its expression levels change by a meaningful amount (fc) between the 

two treatment conditions. In an attempt to balance these dual concerns, we made use of the 

following cut-offs: q ≤ 0.11 false discovery rate and fc ≥ 1.3 (Figure 3.9), reasoning that (a) there 

may be constellations of genes that are only modestly altered individually, but taken in aggregate, 

represent a significantly altered group, and (b) selecting a fold-change cut-off much higher than 

this may erroneously bias us away from these potentially significant results. Implementing these 

criteria, we were immediately struck by two general findings. First, the number of genes that were 

differentially regulated in the presence of RANKL was substantially greater in each of the 

genetically altered backgrounds, KO and KI, than in WT, by a ratio of between 3:1 and 4:1 in a 

pattern that was robust to choice of fc and q cut-offs (Figure 3.9a and Figure 3.9b). This is not 

altogether that surprising in the case of the KO cells, as the abrogation of expression of a 

multifunctional adaptor protein with roles in many signaling pathways is bound to impair a cell’s  
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Figure 3.9a. Volcano plots illustrating gene induction in RANKL treated cells relative to controls. 
(Top panel) Wildtype (WT) only. (Bottom panel) WT data with p62-/- (KO) and p62 P394L (KI) data 
superimposed. Significance for fold change and false discovery rate was set at fc ≥ 1.3 and q ≤ 0.11, 
respectively. 
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Figure 3.9b. Numbers of genes induced or repressed in bone marrow derived osteoclast progenitors from KO, WT, and KI mice in response 
to RANKL. Note that many more genes are differentially regulated in cells obtained from transgenic mice compared to WT, and that the ratio of 
induced to repressed genes is uniquely suppressed in KO cells.
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ability to efficiently maintain homeostatic balance in response to cytokine challenge. It also stands 

to reason that the KI cells might behave like KO cells in some respects, like WT in others, and 

uniquely in still others. In the case of osteoclast progenitors cultured in vitro, disruption of p62’s 

UBA domain has clearly altered the normal WT response to RANKL challenge (Figures 3.9a, b). 

To begin to answer how this has occurred, we turn to a simple inspection of the ratio of genes 

induced to genes repressed in response to RANKL in each of the genetic backgrounds (Figure 

3.9b). For WT and KI cells, many more genes were induced than repressed in response to RANKL. 

The opposite is true for KO cells, which are characterized by a nearly inverse ratio of genes 

induced to repressed in response to RANKL (Figure 3.9b). Several possibilities may explain this 

phenomenon. These include impaired down-regulation of genes in KO cells under basal 

conditions, impaired induction of genes in response to RANKL, or some combination of the two. 

To help clarify which of these conditions pertain, we turned next to a specific analysis of highly 

expressed genes and known osteoclastogenic gene products. 

 

Analysis of select genes suggests that p62 mediates gene expression both in the absence and in 

the presence of RANKL 

First, we plotted the fold change levels of the most highly up-regulated genes from each genetic 

background (Figure 3.10a). 
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Figure 3.10a. Fold induction of most highly up-regulated genes from KO, WT, and KI RANKL-treated cells. 
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While many of these genes are well known to play a role in survival and NFκB signaling in 

osteoclastogenesis (e.g. TRAF1, NFκB2, RelB), there was no obvious correlation between up-

regulation and genotype; that is, the genes most highly up-regulated by RANKL tended to be up-

regulated in all three genotypes, and thus in what appeared to be a p62-independent fashion. Next 

we looked at selected genes known to be involved in osteoclastogenesis (Figure 3.10b). 

 

Figure 3.10b Heatmap of select genes differentially expressed after 8 hours treatment of RANKL or 
vehicle in microarray experiment. Abbreviations: M-Csf, macrophage colony-stimulating factor); Csf1r, 
macrophage colony-stimulating factor receptor; PU.1, Transcription factor PU.1; Bcl-2, B-cell CLL/lymphoma 
2; c-Fos, Proto-oncogene c-Fos; DAP12, DNAX-activating protein; FCRγ, Fc receptor common γ subunit; c-
Src, Proto-oncogene tyrosine-protein kinase Src; Itgb3, Integrin β3; ClC-7, Chloride channel 7; Tcirg1, T cell, 
immune regulator 1, ATPase, H+ transporting, lysosomal V0 protein A3; Ctsk, Cathepskin K; Car2, Carbonic 
anhydrase II; Trap, Tartrate resistant acid phosphatase; DC-Stamp, dendritic cell-specific transmembrane 
protein; OC-Stamp, osteoclast-specific transmembrane protein; OPG, osteoprotegerin 
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In this data subset we expected to find a pattern of gene expression that might help explain the 

phenotypic data we generated in chapter two, i.e., increased expression of pro-osteoclastogenic 

genes in WT and KI cells compared with KO cells. This, however, was not the case. 

Gene expression levels of pro-osteoclastogenic M-CSF, PU.1, and TRAF6 were greater in KO 

cells than in WT cells under control conditions (fold changes of 1.9, 1.5, 1.5, respectively), yet the 

same pattern was true of KI cells relative to WT (fold changes of 1.8, 1.2, and 2.4, respectively) for 

these genes (Figure 3.10b). Conversely, pro-osteoclastogenic RANK, c-Fos, and c-Src were 

expressed at much lower levels in both KO (fc = 0.4, 0.07, and 0.53, respectively) and KI (fc = 0.6, 

0.02, and 0.30, respectively) cells compared to WT under basal conditions (Figure 3.10b). Finally, 

expression of the master regulator of osteoclastogenesis, NFATc1, was significantly higher in KI 

than in WT cells under basal conditions (fc = 1.4), which is consistent with the expected 

phenotype, yet DC-STAMP (fc = 0.5) levels were not (Figure 3.10b).  

Of note, two recent studies asked similar questions using an alternative approach. In 2008, Nagy 

and associates examined gene expression profiles of 15 known genes via RT-PCR in monocytes 

and lymphocytes of 23 known PDB patients compared to healthy controls. They found that, of 

these, eight were up-regulated in PDB patient-derived cultures, including interferons-α, β, γ, p38 

β2 MAPK, interferon-γR1, interferon-γR2, STAT1, one, TNF-α, was found to be significantly 

down-regulated, and in the remainder, RANK, TRAF6, p62, JAK, STAT2, STAT3, and GCR, no 

differences were found compared to healthy controls (Nagy et al., 2008). In 2010, Michou and 

colleagues selected 48 osteoclast-expressed candidate genes with known roles in signaling, 

survival, bone resorption, and adhesion, and used RT-PCR to compare their expression levels in 

cultures of peripheral blood mononuclear cells obtained from twelve known PDB-patients (who 

harbored the P392L mutation) versus non-mutated healthy controls. Interestingly, they found that 
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genes encoding proteins associated with apoptosis (CASP3 and TNFRSF10A), cell-signaling 

(RANK), and bone resorption including TRAP and Cathepsin K were down-regulated in PDB 

patients compared to healthy controls (Michou et al., 2010). Of the individual genes that were up-

regulated in PDB patients compared to controls in these studies, many of the equivalent murine 

genes in our microarray analysis were either not queried on our array (TNFRSF10A, p38 β2 

MAPK or murine MAPK11), were undetectable under vehicle and experimental conditions (IFN-

α, β, γ, TNF-α), or were expressed at levels that were indistinguishable between wildtypes and 

mutants (IFN-γR1, STAT2, STAT3, TRAP or murine ACP5, GCR or murine NR3C1). 

Interestingly, though, our data confirmed a subset of these findings despite significant differences 

in experimental design. RANK, cathepsin K, and caspase-3 were down-regulated (Figure 3.10b, fc 

= 0.6, 0.2, 0.6, respectively), and IFN-γR2 (fc = 1.9) was up-regulated, in KI cells compared to WT 

cells under control conditions. With respect to these genes, caspase-3 plays a well-known role in 

the induction of cellular apoptosis (Jänicke et al., 1998). Is its down-regulation associated with 

decreased apoptosis in pagetic osteoclasts? Some studies have shown that bisphosphonate-induced 

osteoclast apoptosis is caspase-3-dependent (Benford et al., 2001), while others have shown that 

activated caspase-3 is required for osteoclast differentiation (Szymczyk et al., 2006). Moreover, 

interferon-γR2 does not have a well-established role in the formation or activation of osteoclasts, 

yet its relative abundance and induction upon RANKL-stimulation suggest that it deserves further 

inquiry. Finally, RANK and Cathepsin K are typically associated with increased osteoclast 

formation and activation, yet transcript levels are relatively diminished in the very cells (KI) that 

demonstrate the greatest osteoclastogenic potential.  
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To summarize, on the one hand, the partial concordance between our results and those obtained 

from patient samples strengthens our confidence in their validity. On the other, the fact that 

patterns of expression for many of these transcripts do not correlate with known phenotypes 

confirms the complex regulation at work in our cells of interest, and raises several important 

questions. Are differences at the level of transcription manifest at the protein level? Do 

unanticipated expression patterns reflect negative feedback, impaired transcription, or post-

transcriptional modification? These questions are addressed in greater detail in the subsequent 

chapter. Methodologically, though, we are forced to re-examine the approach adopted so far. 

Investigating the most highly expressed genes in our study or examining a pre-identified selection 

of genes of interest may provide some insight into p62’s regulatory role during osteoclastogenesis, 

but these are not systematic, comprehensive, or unbiased approaches. 

 

Gene annotation enrichment helps build hypotheses  

To this end, we turned next to gene annotation enrichment techniques. The Database for 

Annotation, Visualization and Integrated Discovery, or DAVID, is an open access, web-based 

program that provides investigators a set of functional annotation tools that facilitate understanding 

the biological meanings behind gene lists, such as the ones generated by our data pipeline (Huang 

et al., 2009). We submitted each of the six gene lists represented graphically in the bottom panel of 

Figure 3.9b to DAVID and identified several gene ontology terms that were enriched in each data 

set (Figures 3.11a, 3.11b). Many themes normally associated with hematopoietic cells were 

universally enriched, irrespective of genotype, including genes related to: the immune response, 

hematopoiesis, inflammation, and signaling in the apoptotic pathway, while others appeared to be 
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preferentially enriched in specific genotypes: namely down-regulation of genes related to the cell 

cycle, mitochondria, and M-phase in KO cells, and up-regulation of genes associated with the 

endoplasmic reticulum in KI cells (Figures 3.11a, 3.11b). 
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Figure 3.11a. Gene annotation enrichment in RANKL- 
induced genes by genotype. 

Signaling pathways and gene ontology categories (including 
biological processes, molecular functions, and cellular 
components) that are enriched according to the DAVID utility 
in each experimental group are listed along with a measure 
of statistical significance and the number of significant genes 
in each category in parentheses. Note the significant overlap 
of up-regulated genes associated with the immune system, 
the immune response, and apoptosis. 
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Figure 3.11b. Gene annotation enrichment in RANKL-
repressed genes. 

Signaling pathways and gene ontology categories (including 
biological processes, molecular functions, and cellular 
components) that are enriched according to the DAVID utility 
in each experimental group are listed along with a measure 
of statistical significance and the number of significant genes 
in each category in parentheses. Note the significance of 
genes associated with the cell cycle, M-phase, and 
mitochondria in the KO genetic background. 
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Next we sought to focus our analysis and improve the association between our enrichment results 

with our phenotypic profiles – i.e. osteoclast formation and activity that is impaired in KO cells, 

and enhanced in KI cells. We did so by systematically looking for specific patterns of overlap in 

our gene sets and submitting resultant lists to DAVID for further enrichment studies (Figures 

3.12a, 3.12b). The results of three of the most biologically meaningful analyses are described 

below. 

First, we noted that the 104 genes that were commonly up-regulated in response to RANKL across 

the three genotypes, WT, KO, and KI, were not likely to be regulated by p62 in a significant 

manner (Figure 3.12a). Many of the enrichment terms in this group (e.g. hematopoiesis, the 

immune response) are, once again, consistent with the cell type of origin – bone marrow derived 

hematopoietic precursors. Intriguingly, among the 104 genes in this subgroup, the NFκB cascade 

was predicted to be enriched with RANKL treatment of osteoclast progenitors, irrespective of p62 

status – a finding at odds with the prevailing hypothesis about the important role played by p62 in 

this signaling pathway. 
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Figure 3.12a. Annotation enrichment of genes induced by RANKL independent of p62 status. 
  
104 genes were commonly up-regulated in the three experimental groups in response to RANKL. Note the 
enrichment for the genes associated with hematopoiesis, the immune response, Toll-like receptor signaling 
and the NFκB signaling cascade. 
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Next, we explored the genes preferentially down-regulated by RANKL in the KO genetic 

background, finding that the most statistically enriched terms among these 552 genes were the cell 

cycle and the mitochondrial cellular component (Figure 3.12b). The genes associated with the cell 

cycle encode aurora kinases, E2F transcription factors, cyclins, and cyclin dependent kinases, 

which play important roles in mitosis and cellular proliferation, while the genes enriched for the 

mitochondrial component encode proteins associated with oxidative phosphorylation and the 

electron transport chain. Each of these results is broadly consistent with previously published 

findings. In the case of the cell cycle, investigators have demonstrated that p62 is phosphorylated 

by cdk1 in HEK293 cells, a process necessary for the maintenance of sufficient cyclin B1 levels to 

allow cells to properly enter and exit mitosis. In their hands, absence of p62 produced a lower 

fraction of cells in G1 that was attributable to a slower exit from mitosis (Linares et al., 2011). In 

the case of  mitochondrial enrichment, Shin and colleagues have demonstrated that a subset of 

cellular p62 protein directly localizes within mitochondria obtained from murine brain tissue, 

forming heterogeneous protein complexes with several oxidation-prone proteins (including 

components of the electron transport chain, chaperone molecules, and redox enzymes) to support 

stable electron transport. They also demonstrated that p62-deficient mitochondria exhibited 

impaired electron transport, which was partially restored by in vitro delivery of p62 (Lee and Shin, 

2011).  
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Figure 3.12b. Annotation enrichment of genes uniquely repressed by RANKL in KO cells. 
  
552 genes were uniquely down-regulated in the KO group. Note the enrichment in genes associated with 
the cell cycle, chromosome organization, M-phase, and mitochondria. 
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How might these results correlate with the impaired osteoclastogenic phenotype of RANKL-

treated KO cells? Osteoclasts, and, in particular, fully-differentiated, bone-resorbing osteoclasts, 

are characterized by an over-abundance of mitochondria, required to power energy-taxing activities 

such as bone resorption. In this manner, the absence of p62 may impair osteoclastogenesis by 

altering the expression of proteins involved in normal cell-cycle progression and the efficient 

function of the electron transport chain in these metabolically active cells. 

Finally, we investigated transcripts that were uniquely up-regulated by RANKL in KI cells, 

reasoning that this subset of genes might be enriched for known pro-osteoclastogenic processes 

and pathways (Figure 3.12c). In this group, we found 391 genes that were enriched for association 

with the endoplasmic reticulum in terms of cellular component. Deeper investigation of these 

genes reveals further enrichment for genes associated with phosphate metabolism, redox reactions, 

catabolic processes, and protein folding and localization. Two possibilities for this pattern of 

expression present themselves. First, osteoclast progenitors obtained from KI mice are known to be 

hypersensitive to RANKL. It may be that these metabolically-hyperactive, differentiating cells 

have an increased requirement for protein-folding machinery. On the other hand, it is well known 

that p62 plays an important role in maintaining cellular homeostasis by mediating selective 

autophagy and the oxidative stress response. This pattern of gene expression, may, alternatively, 

reflect an impairment in either or both of these functions, generating an increased burden of 

intracellular cargo (including misfolded proteins) that may then activate the unfolded protein 

response (UPR), an evolutionarily-conserved, intracellular program of signal transduction that 

mitigates cellular stress or guides the cell to apoptose (Walter and Ron, 2011). Interestingly, it has 

been shown that selective autophagy is activated for cell survival after endoplasmic reticulum 

stress (Ogata et al., 2006).  
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Figure 3.12c. Annotation enrichment of genes uniquely induced by RANKL in KI cells.  

391 genes were uniquely up-regulated in the KI experimental group. Note the unique enrichment for genes 
associated with establishment of protein localization, catabolic processes, and the endoplasmic reticulum 
cellular component. 
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Mutations to p62’s UBA domain, as in our KI cells, diminish its ability to bind ubiquitin, as well as 

ubiquitinated and misfolded proteins, then clear them via its (PB1-domain mediated) interaction 

with RPT1 of the 26S proteasome or its (LIR-domain mediated) interaction with LC3 in the 

autophagosome. In this manner, misfolded proteins that are normally directed toward proteasomal 

or autophagic degradation may accumulate in the ER lumen, prompting increased ER stress, and a 

more robust unfolded protein response (UPR). In this light, there is some evidence that induction 

of the ER stress response spurs osteoclast precursor differentiation (Wang K et al., 2011), but more 

work must be conducted to establish this more firmly. 

To summarize, gene annotation enrichment analysis has led to a number of preliminary hypotheses 

about the role of p62 in RANKL-induced osteoclastogenesis: (a) that NFκB signaling may be 

largely p62-independent, (b) that ablation of p62 may alter osteoclast progenitor proliferation and 

mitochondrial function, indirectly diminishing osteoclastogenesis, and (c) that mutation of the 

UBA domain leads to the preferential up-regulation of ER-associated genes, possibly via an 

intensified ER-mediated unfolded protein response. To strengthen and refine these hypotheses, we 

next turned to upstream regulator analysis.  

 

Upstream regulator analysis conducted on RANKL-treated osteoclast progenitors leads to 

several testable hypotheses 

As noted earlier in the methods, DAVID and other broad-based gene annotation enrichment 

programs are very useful for providing generally enriched themes in user-specified gene 

expression sets. There is no specific mechanism, however, to distinguish between genes that are 

induced and genes that repressed in such sets. To deal with this deficiency we manually divided 
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our gene lists and submitted them in separate blocks of up and down-regulated genes for each of 

our three genotypes (Figure 3.9b, bottom panel), then re-performed this analysis after parsing out 

both overlapping and unique sets of genes that we hypothesized might correlate with our known 

phenotypes (Figures 3.11, 3.12). This analysis has provided important introductory themes about 

underlying pathways and biological processes, but is necessarily limited in two ways. First, real 

biological pathways and processes are composed of complex networks of genes, some of which 

may be up-regulated in response to external stimuli while others, in the same pathway and in 

response to the same stimulus, might be simultaneously down-regulated. Moreover, it may be that 

a pathway is composed of several genes whose expression and function are p62-independent with 

the exception of a key subset that is differentially-regulated by p62. In this manner parsing out 

genes to highlight differences in gene sets, as we did in Figures 3.12, may bias analyses away from 

more complex regulatory networks. The larger issue, though, as discussed earlier in the methods, is 

the absence of a prediction about the activation status of enriched biological pathways. To deal 

with these potential sources of bias and make more accurate predictions about potentially up and 

down-regulated networks, we made use of Ingenuity IPA’s upstream regulator analysis tool. 

Specifically, we submitted each list of genes represented by the middle panel of Figure 3.9, along 

with its fold change in response to RANKL treatment, and queried the system for quantitative 

predictions about the upstream regulators (very broadly defined, but includes cytokines, kinases, 

transcription factors and so on) most likely to be activated or inhibited in each data set (Figure 

3.13a). 
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Figure 3.13a. Upstream regulator analysis in RANKL-

treated osteoclast progenitors from WT, KO, and KI 

mice listed in descending order of statistical 

significance. 

Genes that met experimental thresholds for biological (fc ≥ 

1.3) and statistical significance (q ≤ 0.11) were analyzed 

using the Ingenuity IPA upstream regulator analysis tool. 

Regulators are listed in order of descending statistical 

significance (right side of each figure) for each of the three 

experimental groups. Regulators that met standardized 

criteria for a prediction of activation (z-score > 2) are 

highlighted in orange, while those predicted to be inhibited 

(z-score < -2) are highlighted in blue. 

WT KO 

KI 
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On the right hand side of each plot is a series of upstream regulators listed in descending order of 

enrichment strength (quantified, as noted above by a modified Fisher’s exact score). On the left 

hand side, an independent, literature-based z-score offers a quantitative prediction about the 

activation status of each regulator.  

A few points are noteworthy in this regard. First, for each genotype, the regulator that combines 

the highest prediction of activation and the greatest enrichment status is TNFSF11, otherwise 

known as RANKL, the very cytokine we used to stimulate our osteoclast progenitors (Figures 

3.13b, 3.13c, 3.13d). This validation for the IPA URA tool, albeit internal, provided us with some 

measure of confidence for subsequent analyses. 
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Figure 3.13b. Upstream regulator analysis of the WT gene expression set predicts that TNFSF11 (RANKL) is robustly activated. All 297 
genes that were up- and down- regulated in the WT experimental group were submitted to IPA’s URA tool. This chart displays the subset of gene 
products they encode that are regulated by RANKL. Gene products colored red and green were up- and down-regulated, respectively. Each gene 
product is listed on the left of the figure if its status (induction or repression) suggests that the upstream regulator is activated, and plotted on the right 
if its status (induction or repression) suggests that the upstream regulator is inhibited. 
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Figure 3.13c. Upstream regulator analysis of the KO gene expression set predicts that TNFSF11 (RANKL) is robustly activated. All 1057 
genes that were up- and down- regulated in the KO experimental group were submitted to IPA’s URA tool. This chart displays the subset of gene 
products they encode that are regulated by RANKL. Gene products colored red and green were up- and down-regulated, respectively. Each gene 
product is listed on the left of the figure if its status (induction or repression) suggests that the upstream regulator is activated, and plotted on the right 
if its status (induction or repression) suggests that the upstream regulator is inhibited. 
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Figure 3.13d. Upstream regulator analysis of the KI gene expression set predicts that TNFSF11 (RANKL) is robustly activated. All 959 genes 
that were up- and down- regulated in the KI experimental group were submitted to IPA’s URA tool. This chart displays the subset of gene products 
they encode that are regulated by RANKL. Gene products colored red and green were up- and down-regulated, respectively. Each gene product is 
listed on the left of the figure if its status (induction or repression) suggests that the upstream regulator is activated, and plotted on the right if its status 
(induction or repression) suggests that the upstream regulator is inhibited. 
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Next, we sorted enriched upstream regulators by predicted activation and inhibition. We were most 

struck by the abundance of regulators known to participate in the NFκB signaling pathway (Figure 

3.14a).  

Intriguingly, there was a greater divergence among the most inhibited regulators across the three 

genotypes. Specifically, several microRNAs were predicted to be inhibited in the WT and KI gene 

expression sets, but not in the p62 KO set (Figure 3.14b). This is most likely because a sufficient 

number of transcripts normally targeted for degradation or translational repression by these 

microRNAs are induced in KI and WT data sets to suggest that the pertinent microRNA are not 

active – and raises the interesting possibility that p62 may regulate microRNA function during 

osteoclastogenesis. 
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Figure 3.14a. Upstream regulator analysis in RANKL-

treated osteoclast progenitors from WT, KO, and KI 

mice listed in descending order of predicted 

activation. 

Genes that met experimental thresholds for biological (fc ≥ 

1.3) and statistical significance (q ≤ 0.11) were analyzed 

using the Ingenuity IPA upstream regulator analysis tool. 

Regulators that met standardized criteria for a prediction 

of activation (z-score > 2) are highlighted in orange. 

Regulators are listed in descending order of activation (left 

side of each figure) for each of the three experimental 

groups. 
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Figure 3.14b. Upstream regulator analysis in RANKL-

treated osteoclast progenitors from WT, KO, and KI 

mice listed in descending order of predicted 

inhibition. 

Genes that met experimental thresholds for biological (fc ≥ 

1.3) and statistical significance (q ≤ 0.11) were analyzed 

using the Ingenuity IPA upstream regulator analysis tool. 

Regulators that met standardized criteria for a prediction 

of inhibition (z-score < -2) are highlighted in blue. 

Regulators are listed in increasing order of predicted 

inhibition (left side of each figure) for each of the three 

experimental groups. 



www.manaraa.com

 
 

119 
 

 

To review the upstream regulators in a more systematic manner, and ideally develop and refine the 

hypotheses that originated with our gene annotation enrichment analyses, we generated Venn 

diagrams of overlap for our newly generated upstream regulators, relaxing inclusion criteria from a 

z-score of 2 to a z-score of 1.9 to reduce artifactual differences (Figure 3.15). 

 

 

Figure 3.15. Overlap of upstream regulators predicted to be activated (↑) and inhibited (↓) in 

RANKL-treated osteoclast progenitors from KO, WT, and KI mice. Genes that met experimental 
thresholds for biological (fc ≥ 1.3) and statistical significance (q ≤ 0.11) were submitted to the Ingenuity IPA 
upstream regulator analysis tool. Regulators were then compared across genotypes as listed using Venny. 
A critical selection of regulators predicted to be phenotypically relevant is identified in the following figures.  
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As before, we observed that upstream regulators that were commonly predicted to be active or 

inhibited in response to RANKL across the three genotypes, WT, KO, and KI, were not likely to be 

significantly regulated by p62 (Figure 3.16). Most significantly, we were struck by the abundance 

of inflammatory mediators and members of NFκB signaling pathway, namely RelA (p65) a key 

transcription factor in the classical or canonical pathway, IKBKB (IKKβ) an upstream kinase, 

CHUK (IKKα) a member of the IKK complex, and so on (Figure 3.16). That NFκB signaling 

appears to be activated independent of p62 status was particularly striking to us given the 

important role previously ascribed to it in this cascade (Durán et al., 2004; Layfield, 2007). We 

returned to this hypothesis, testing the presence and interaction of several downstream 

intermediaries in the RANK-NFκB signaling pathway using immunoblotting and Co-

immunoprecipitation, and report the results in the next chapter. 

We also found the common prediction of inhibition for the regulators CD3 (the T-cell co-receptor 

protein complex) and GFI1 (growth factor 1 independent transcription repressor) very interesting. 

GFI1, in particular, plays a negative role in the proliferation of hematopoietic stem cells, 

maintaining their self-renewal and preserving their functional integrity (Duan and Horwitz, 2005). 

Moreover, GFI1 signaling is required for B and T-cell development, but antagonizes differentiation 

along the monocyte/macrophage lineage (Duan and Horwitz, 2005). That GFI1 and CD3 are 

predicted to be inhibited in RANKL-treated cells of all 3 genotypes supports the hypothesis that 

early differentiation of hematopoietic precursors along the monocyte/macrophage lineage, and 

apart from the lymphoid lineage, is also p62-independent (Figure 3.16). To this end, we used flow 

cytometry to measure the expression of osteoclast progenitor-specific cell surface markers during 

early RANKL-mediated osteoclastogenesis and report the results in the next chapter. 
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Figure 3.16. Overlap of upstream regulators predicted to be commonly activated (↑) and inhibited (↓) in RANKL-treated osteoclast 

progenitors from KI, WT, and KO mice. 
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Next, we reviewed the set of regulators predicted to be activated or inhibited in the WT and KI 

experimental sets, exclusively (Figure 3.17). Here, we reasoned that differentially activated 

mediators discovered in this set might better explain measured deficiencies in the KO phenotype. 

Most notably, Nuclear factor (erythroid-derived 2)-like 2 (NFE2L2 or NRF2), a transcription 

factor and master transcriptional regulator of the oxidative stress response, was predicted to be both 

highly activated and highly enriched in this data set in RANKL-treated WT and KI cells, but not in 

KO cells. As noted earlier, NRF2 is constitutively ubiquitinated and degraded by the proteasome 

under non-stressed conditions (Nezis and Stenmark, 2012). However, in the presence of 

electrophiles or ROS, its cytoplasmic inhibitor, KEAP1, is either inactivated or competitively 

displaced by p62, permitting NRF2 translocation into the nucleus, and the up-regulation of several 

detoxifying and antioxidant genes (Figure 1.7). It has previously shown that RANKL-stimulation 

of osteoclast progenitors increases intracellular ROS through a signaling cascade involving TRAF6 

(Lee et al., 2005) and that p62 is also an NRF2-target, forming a positive-feedback loop in the 

antioxidant response (Jain et al., 2010). In this manner, two hypotheses present themselves: Either 

(1) KO cells have an impaired NRF2 signaling response because RANKL-mediated ROS 

production cannot displace the KEAP1-NRF2 interaction in the absence of p62, NRF2 remains 

persistently degraded and cannot translocate into the nucleus, and the antioxidant response is 

therefore never able to be appropriately mounted; or (2) RANKL-treated KO cells never generate 

sufficient ROS to stimulate NRF2 displacement and translocation. To help resolve this ambiguity, 

preliminary measures of RANKL-dependent ROS generation and NRF2 displacement into the 

nucleus were made. Results are described in the following chapter. 
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This analysis also suggests that during RANKL-stimulation of bone marrow derived precursors, 

p62 may regulate osteoclastogenesis through additional signaling pathways.  

These include those mediated by protein kinase C-delta (PRKCD), mammalian target of rapamycin 

(activated), and mir-124 (repressed), in WT and KI, but not KO progenitors (Figure 3.17). When 

ablated genetically, PRKCD has been shown to impair lysosomal exocytosis of the critical 

secreted, proteolytic enzyme cathepsin K, resulting in mice with increased bone density (Cremasco 

et al., 2012). mTOR, an evolutionarily conserved serine/threonine protein kinase in the 

phosphoinositide 3-kinase (PI3K)-related kinase family, has been shown to promote 

osteoclastogenesis by altering translation initiation and isoform production of the critical 

transcription factor C/EBPβ in bone marrow derived osteoclast progenitors (Smink et al., 2009). 

When mTOR is inhibited genetically or pharmacologically, osteoclastogenesis is suppressed (Indo 

et al., 2013). Interestingly, p62 has been shown to interact with regulatory-associated protein of 

mTOR (Raptor), promoting nutrient sensing and cell growth by the mTOR complex 1 (Duran et 

al., 2011).  

In contrast, microRNA-124 (miR-124) is a small non-coding RNA associated with inhibited 

proliferation and motility of osteoclast precursors, and decreased expression of the master 

osteoclastogenic transcription factor, NFATc1, but not NFκB or c-Fos (Lee Y et al., 2013). 

Interestingly, it has been previously documented that within 6 hours of RANKL-treatment in bone 

marrow derived osteoclast progenitors, endogenous expression of miR-124 falls by 50% 

(consistent with predictions made in WT and KI but not KO cells), and after 48 hours, less than 

10% of miR-124 expression was detectable compared to that of untreated control, suggesting that 

this microRNA plays a physiological role (Lee, Y et al., 2013). 
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Figure 3.17. Upstream regulators predicted to be commonly activated (↑) and inhibited (↓) in 

RANKL-treated osteoclast progenitors from WT and KI mice. 
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Next, we investigated the upstream regulators that were predicted to be activated or inhibited in 

response to RANKL exclusively in KO cells (Figure 3.18). Several factors stood out in our 

analysis: RBL1 or p107, a key regulator of entry into cell division and potent inhibitor of cell cycle 

genes and let-7, a microRNA that has been shown to represses proliferation in human cells 

(Johnson et al., 2007), are predicted to be activated, while: E2F1, a transcription factor involved in 

cell proliferation; EIF4E, Eukaryotic translation initiation factor 4E, which plays a role in bringing 

mRNA to the pre-initiation complex during eukaryotic translation, are predicted to be inhibited. 

When taken individually, each regulator may only be modestly inhibited or activated. However, 

when taken together, a picture emerges of impaired cellular proliferation (Figure 3.18) in RANKL-

treated KO cells that is not found in similarly treated WT or KI cells. The hypothesis that RANKL-

treated KO cells are characterized by impaired proliferation was tested using a DNA synthesis 

assay (BrdU), while a cellular activity assay (MTT) was included to control for differing levels of 

viability. Results are reported in the following chapter. 
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Figure 3.18. Upstream regulators predicted to be activated (↑) and inhibited (↓) in RANKL-treated 

osteoclast progenitors from KO mice only. 
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Finally, we turned to upstream regulators predicted to be activated and inhibited in RANKL-

stimulated KI osteoclast progenitors, exclusively, hoping to gain insight into what drives 

hypersensitivity to RANKL in progenitors and osteopenia in vivo observed in the preceding 

chapter (Figure 3.19). Notably, two regulators previously associated with osteoclast phenotypes 

were predicted to be activated in KI cells alone. First among these was X-box binding protein 1 

(XBP1), an evolutionarily conserved transcriptional effector that is activated in response to ER 

stress and required for the up-regulation of a host of genes that clear misfolded proteins (Acosta-

Alvear et al., 2007) and has been previously shown to support myeloma cell growth and osteoclast 

formation (Xu et al., 2012). The second was CD38, an NAD+ degrading enzyme whose activation 

in the osteoclast triggers Ca
2+

 release and increased secretion of IL-6 (Sun et al., 2003). This is 

notable because IL-6 is elevated in PDB patients (Werner de Castro et al., 2014), and has been 

demonstrated to play a critical role in the formation of pagetic lesions, in vivo, and increased 

responsivity of osteoclast progenitors to 1,25-(OH)2D3, in vitro, in multiple PDB models (Kurihara 

et al., 2011; Teramichi et al., 2013). In contrast, B-cell lymphoma 6 protein (BCL6), a 

transcriptional repressor of NFATc1 whose overexpression inhibits osteoclastogenesis in vitro and 

ablation accelerates osteoclast differentiation and osteoporosis (Miyauchi et al., 2010), was 

predicted to be inhibited in KI cells alone (Figure 3.19). 

Less has been published about the potential role played in osteoclastogenesis by additional factors 

identified in this analysis. IL-5, a cytokine that acts as a growth and differentiation factor for B 

cells and eosinophils, was also predicted to be activated exclusively in KI cells in our analysis 

(Figure 3.19). Interestingly, IL-5 has previously been shown not to affect osteoclast formation in 

vitro (Miyamoto et al., 2001), but has also been shown to dramatically increase extramedullary 

hematopoiesis and the numbers of granulocyte-macrophage, macrophage, eosinophil, and B-
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lymphocyte progenitors in the peripheral blood and spleens of transgenic mice that overexpress 

this cytokine compared to wildtype (Khaldoyanidi et al., 2003). HDAC which in IPA’s analysis 

refers to the broad category of histone deacetylases rather than a particular member of this group 

was also predicted to be activated in the present analysis in KI cells alone (Figure 3.19). 

Interestingly, the broad inhibitor of HDAC activity, trichostatin A (TSA) has been shown to 

suppress osteoclastogenesis (as well as RANKL formation, NFκB activation, bone resorption pit 

formation) by down-regulating c-Fos and NFATc1 in RAW 264.7 cells, likely by altering C/EBPβ 

(Williams et al., 2011). Moreover, different HDAC family members have differing effects on 

osteoclastogenesis, as suppression of HDAC3 and HDAC7 expression inhibits and accelerates 

osteoclast formation, respectively, in vitro (Pham et al., 2011). Finally, we may note that p62 has 

been shown to complex with HDAC6 (via an undefined region between p62’s ZZ and TRAF6-

binding domain) and that its ablation results in hyperactivation of HDAC6 and deacetylation of α-

tubulin and cortactin in vitro (Yan et al., 2013). That said, drilling deeper into our data reveals that 

after 8 hours of RANKL-stimulation, none of the individual HDAC members queried (1, 3, 4, 5, 6, 

or 10) by IPA were predicted to be activated or repressed in our data set (data not shown), so 

further testing will be required to clarify whether PDB-associated mutations affect specific HDAC-

mediated signaling during osteoclastogenesis.  
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Figure 3.19. Upstream regulators predicted to be activated (↑) and inhibited (↓) in RANKL-treated 

osteoclast progenitors from KI mice only. Note that Rbl2 is predicted to be inhibited in KI cells and 

activated in KO cells. 
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3.4 Discussion 

In this chapter, we sought to shed light on how genetic alteration at the p62 locus mediates normal 

and dysregulated osteoclastogenesis following RANKL stimulation - using gene expression 

profiling of bone marrow derived progenitors obtained from WT, KO, and KI mice. In the process, 

we have identified several hypotheses using gene annotation enrichment, upstream regulator 

analysis, and pattern analysis that may be summarized as follows. In bone marrow derived 

osteoclast progenitors treated with RANKL: 

1. p62 may be dispensable for RANKL-mediated NFκB signaling and early differentiation of 

hematopoietic precursors toward the monocyte/macrophage lineage and apart from the 

lymphoid lineage during early osteoclastogenesis. 

2. Ablation of p62 may impair cellular proliferation, cell cycle progression, or mitochondrial 

integrity, and thereby impair osteoclastogenesis. 

3. Ablation of p62 may impair the NRF2-mediated oxidative stress response, protein kinase C 

delta (PRKCD) function, or mammalian target of rapamycin (mTOR) signaling, and 

thereby impair osteoclastogenesis. 

4. p62 may mediate microRNA-124 turnover – and the absence of p62 may be associated 

with enhanced microRNA-124 signaling and impaired osteoclastogenesis. 

5. P394L mutation of p62 may be associated with an increase in the unfolded protein stress 

response via XBP1, and thereby enhance osteoclastogenesis. 

6. P394L mutation of p62 may be associated with increased CD38 signaling and IL-6 

production, and thereby enhance osteoclastogenesis. 

7. P394L mutation of p62 may be associated with decreased BCL6 signaling and thereby 

enhance osteoclastogenesis. 
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These results are significant because they are inconsistent with the most commonly accepted 

paradigm as to how p62 contributes to osteoclast formation, offer alternative explanations to results 

obtained by previous investigators, and present several novel, testable theories as to how PDB-

associated mutation to p62 might contribute to increased osteoclastogenesis in PDB. Furthermore, 

they were generated via unbiased analysis of gene expression profiling data via DNA microarray 

on primary cultures obtained from genetically-modified animals on the C57Bl/6J background. This 

experimental design mitigates confounders such as inconsistent or supra-physiologic expression 

levels with pharmacologic models, strain-dependent background differential gene expression (Turk 

et al., 2004), and bias in target-selection inherent in limited gene expression profiling studies using 

RT-PCR. Indeed, the advantages conferred by using DNA microarray to develop our hypotheses, 

chief among them the ability to monitor expression levels of several thousand genes 

simultaneously in a time and cost-effective single experiment, are clear. Yet the task of searching 

for determinants of phenotype using gene expression levels is also fraught with many assumptions, 

potential sources of error, and limitations that must be acknowledged (Draghici et al., 2006).  

First and foremost, we must acknowledge that our results are preliminary and must be reproduced 

via external validation and further experimentation, a process which is partially undertaken in the 

subsequent chapter. This is because reproducibility remains the greatest concern with gene 

expression profiling using microarray technology. Indeed, in 2009, three clinical trials were 

suspended at the Duke University Medical Center because genomic signatures used to select 

cancer therapies were found to be irreproducible (Baggerly, 2010). Although this particular case 

was later to have been complicated by additional personal and scientific misconduct, and later 

terminated (Reich, 2011), the challenge of inter-experimental reproducibility is well documented in 

the literature. In 2009, for example, 18 microarray articles that had been published in Nature 
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Genetics between 2005 and 2006 were evaluated for reproducibility. Of these, 2 were found to be 

reproducible, 6 were partially reproducible with some discrepancies, and 10 could not be 

reproduced (Ioannidis et al., 2009). Beyond insufficient data reporting and annotation, past 

challenges with this technology, including probe-set heterogeneity and change over time, laser-

scanner readout variability, result platform-dependence, and additional sources of bias and artifact, 

have contributed to irreproducibility (Irizzary et al., 2005). Over time, however, multiple reviews 

and recommendations by organizations such as the MicroArray Quality Control (MAQC) 

consortium have led to the establishment of quality control standards, implemented in the design 

and analysis phases of the current study, that maximize accuracy, precision, sensitivity, and cross-

platform reproducibility (MAQC Consortium, 2010). Further, intrinsic, limitations in gene 

expression profiling using microarray include deficiencies in our ability to measure products of 

alternative splicing or functionally important genes that are not highly expressed, as well as 

knowledge gaps in gene annotation, function, and correlation with translation (Oliver and Malone, 

2011).  

In the current study, more specific experimental design limitations include the number of 

experimental endpoints and biological replicates we were able to explore given financial and 

temporal constraints. We selected the 8 hour time point to assess how the transcriptome is altered 

during early osteoclast formation in response to RANKL treatment, while controlling for the 

effects of serum and M-CSF, which have been shown to increase, and thereby mask, or alter 

mRNA expression (Schmittgen TD and Zakrajsek, 2000; Cappellen et al., 2002). To have had an 

additional set of arrays at the zero time point as an additional control would have been ideal, and 

indeed, an initial attempt to conduct the experiment in this manner was attempted. However, 

insufficient RNA yields and the physical challenge of working with so many samples limited our 
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experimental design to the one employed presently. Additionally, our samples were not simply 

technical replicates because each of our 18 arrays (3 replicates x 2 treatments x 3 genotypes) came 

from a single plate of related, but not identical cells. It must be acknowledged, however, that these 

samples cannot be called true biological replicates, because samples were pooled by genotype 

early during progenitor preparation, before being aliquoted into individual plates. While not ideal, 

this step was required to control and normalize for gender, age, and, in the case of wildtype 

samples (which were culled from the progeny of both KO and KI heterozygotes) colony of origin. 

In parallel with these design issues, several additional considerations must be borne in mind with 

respect to data analysis. First, as noted earlier, we selected cut-offs for significance at fold change 

≥ 1.3 and false discovery rate ≤ 0.1. While these appear to be relatively relaxed criteria, we found 

that the patterns of analysis were relatively robust to cut-off value selections. Moreover, we 

reasoned that there may be patterns of gene expression change that, taken in aggregate, unveil 

greater information about broad patterns of regulation. Indeed, there are important historical 

precedents for such an approach. In one example, investigators published reports in which they 

identified sets of genes involved in oxidative phosphorylation with reduced expression in diabetic 

patients. None of the genes were repressed or down-regulated by more than 20% individually, but 

as a group their coordinated down-regulation was significant. Taken together with subsequent 

work, this analysis led to an improved understanding of the regulation of oxidative 

phosphorylation, as many of the components of this pathway turned out to be controlled by the 

PGC-1α transcription factor, which itself, was later found to be down-regulated in diabetic patients 

(Mootha et al., 2003; Mootha et al., 2004; Cunningham et al., 2007). Second, it might be argued 

the upstream regulator analysis tool utilized to generate hypotheses is built upon a database that is 

dynamic and constantly updated, on the one hand, yet proprietary, and, to a certain extent, 
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arbitrary. Do findings about relationships in other species always pertain to findings in mammalian 

cells? Is it then appropriate to always use such results in calculating whether a regulator is 

predicted to be activated or inhibited in our findings? The answer in both cases is clearly not. 

Furthermore, what does a quantitative difference in an upstream regulator’s enrichment score (or 

activation level) mean? In Figure 3.14a, for example, the activation scores for TNF, the upstream 

regulator most highly enriched in KO, WT, and KI analyses, are 4.3, 6.0, and 5.7 (with z > 2.0 

corresponding to activation). Does this suggest that there is greater activation of TNF signaling in 

WT than in KI cells, and that they are much greater than in KO cells? In reply to these questions 

we must speak with less conviction, for all that can be said with certainty is that the pattern of gene 

expression in each comparison (treatment vs. control) is consistent with what we might expect if 

the TNF signaling pathway were activated and that we have some measure of confidence in the 

biological relevance of our results in that they confirmed that TNFSF11 (RANKL), the very 

cytokine experimentally used to induce osteoclastogenesis, was predicted to be robustly activated 

in each assay (Figure 3.13a, b, c, d). More importantly, perhaps, we note that this portion of our 

analysis was aimed to be exploratory and generative rather than confirmatory and definitive and 

that external experimental validation is required to increase our confidence in these results.  

To summarize, in this chapter we utilized gene expression profiling to develop several novel 

hypotheses about the role of wildtype and PDB-associated mutant p62 in normal and dysregulated 

osteoclastogenesis, respectively. Interestingly, preliminary results have called into question 

whether p62 plays an important role in early RANK-TRAF6-NFκB signaling during early 

osteoclast formation. We take up each of these issues in the following chapter.  
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CHAPTER 4 

VALIDATION OF MICROARRAY-GENERATED HYPOTHESES 

 

4.1 Introduction 

In the preceding chapter, we generated several novel hypotheses about the role played by p62 in 

normal and dysregulated osteoclastogenesis associated with Paget’s disease of bone (PDB). We did 

so by utilizing gene expression profiling on RANKL-treated primary osteoclast progenitors 

obtained from wildtype (WT), p62 knock-out (KO), and PDB-associated P394L p62 knock-in 

mutants (KI), and compared them with vehicle-treated controls. Surprisingly, preliminary results 

suggested that p62 may be dispensable for NFκB signaling during early osteoclast formation, but 

impair proliferation, cell cycle progression, mitochondrial integrity, or the NRF2-mediated 

oxidative stress response, and thereby impair osteoclastogenesis. In contrast, a common PDB-

associated p62 mutant was associated with a prediction of an increased unfolded protein stress 

response, CD38 signaling, or decreased BCL6 signaling, each of which may be associated with 

enhanced osteoclastogenesis. Key questions remain answered, however. Do p62-mediated 

alterations in RANK and TRAF6 expression manifest at the level of protein? Is early 

osteoclastogenesis or NFκB signaling altered by changes at the p62 locus? Are cell viability and 

proliferation truly altered in a p62-dependent manner? To help clarify the role played by p62 in
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osteoclast formation and activation, we sought to test a selection of these hypotheses in the present 

chapter by tracking protein expression and the interaction of critical intermediaries in the RANK-

NFκB signaling in response to RANKL stimulation, and functionally probing p62’s effects on 

cellular differentiation, proliferation, viability, and reactive oxygen species (ROS) production. 

 

4.2 Methods 

Osteoclast progenitor formation for validation experiments 

For all post-array validation experiments, including the BrdU cell proliferation assay, MTT activity 

assay, ROS production assay, Flow Cytometry (FC), Western blotting (WB), and Co-

Immunoprecipitation (Co-IP), the standard procedure to generate osteoclast progenitors was used. 

Briefly, non-adherent marrow cells were plated at the following densities (1 x 10
5
cells/well: 96-

well plate for BrdU, MTT, and ROS; 2.5 to 3 x 10
6
cells/mL: 6-well, 6cm plates for Flow 

Cytometry; and 3 x 10
6
cells/mL: 10cm plates for WB, Co-IP) as previously described (Hiruma et 

al., 2008), and cultured in conditioning media (α-MEM + 10% FBS + 1% antibiotic/antimycotic) 

for 2 days in the presence of recombinant murine M-CSF (20ng/mL, R&D). Additional quantities 

of M-CSF and RANKL were delivered as noted in each experiment. 

 

Flow cytometry 

Osteoclast progenitors obtained from KO, WT, and KI mice were generated in 96 well plates as 

noted above. Staining was conducted using combinations of the following conjugated antibodies: 
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APC-CSF-1R (Biolegend 135509 APC-conjugated anti-mouse, CD115, which is the receptor for 

M-CSF, and PE-RANK (Biolegend 119806 PE-conjugated anti-mouse RANK, CD265, the 

receptor for RANK-ligand). Briefly, cells in cultures plates were gently washed with PBS and 

detached manually, incubated with Fc Block for mice, and then with an optimal dilution of the 

conjugated antibodies noted above. After washing to remove nonspecific antibody, cells were 

analyzed on the BD FACSCantoII (BD Bioscience) in the VCU Flow Cytometry Shared Resource 

and analyzed using the FCS Express 4 (De Novo Software) software package.  

 

Antibodies used in this study include: 

p62 (Novus, Ms monoclonal (2C11), H00008878-M01; WB- 1:100,000; ineffective CoIP) 

TRAF6 (Enzo lifesciences, Rb polyclonal, ADI-AAP-426; WB- 1:2500; CoIP- 1:50 to 1:100) 

RANK (Novus, Rb polyclonal, NB100-56396; WB- 1:1000) 

IKKβ (Cell Signaling, Rb polyclonal (L570), 2678S; WB- 1:1000) 

NEMO (Cayman, aka IKKγ Ms monoclonal (72C627), 13931; WB- 1:1000) 

IκBα (Cell Signaling, Ms monoclonal (L35A5), 4814S; WB- 1:1000) 

p65 (Santa Cruz, Ms monoclonal (F-6) aka NFκB p65 or RelA, sc-8008; WB- 1:200) 

NRF2 (Abcam, Rb ployclonal, ab92946; WB-1:1000) 

β-actin (Santa Cruz, Ms monoclonal (C4), sc-47778 HRP; WB- 1:20,000 to 1:50,000) 

nucleolin (Santa Cruz, Ms monoclonal (H-6) aka C23: sc-55486; WB- 1:1000) 
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Western blot and immunoprecipitation 

For RANKL or M-CSF signaling, osteoclast progenitors were cultured as described above in 10cm 

culture plates. Cells were then stimulated with 100ng/mL recombinant murine RANKL (R&D) for 

various times. Before lysis, 10x buffer (Cell signaling 9803), composed of 20 mM Tris-HCl (pH 

7.5), 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton, 2.5 mM sodium pyrophosphate, 1 

mM beta-glycerophosphate, 1 mM Na3VO4, 1 µg/ml leupeptin (Cell signaling, 9803), was thawed 

with milliQ water, and combined with a mixture of protease and phosphatase inhibitors (Roche) 

immediately before use. Cells were initially washed twice with PBS, followed by the addition of 

lysis buffer at 4°C for 10-20min on ice, brief mild sonication, followed by vortexing, additional 

incubation on ice (10-20min), and centrifugation (10,000g, 10min, 4°C). Sample buffer (Bio-Rad) 

– to which SDS had been freshly added – were combined with supernatants or nuclear extracts 

obtained from pellets (Pierce NE-PER) in a 1:1 ratio. Combined solutions were boiled at 95-100°C 

before being resolved on SDS polyacrylamide gels. When appropriate, nuclear extracts were 

prepared using the NE-PER Nuclear and Cytoplasmic Extraction Kit (Thermo Scientific 78833). 

For co-immunoprecipitation (Co-IP), lysates (0.5–1 mg) were pre-cleared by protein G 

(Invitrogen) or Trueblot Rabbit IgG-beads (eBiosciences), and then incubated with 1:50 to 1:100 

μg of TRAF6 Ab (Enzo lifesciences, ADI-AAP-426-E) or control Rabbit IgG (Santa Cruz) at 4°C 

overnight, followed by incubation with protein G or Trueblot IgG for 2 to 4 hr at 4°C. Precipitates 

were washed at least four times in 1:1 dilution of PBS to lysis buffer, then eluted in 2× sample 

buffer. Eluted materials were resolved on SDS polyacrylamide gels (Bio-Rad TGX gel, 7.5% and 

any kD at 130V, 35minutes, RT), wet transferred (250mA, 2.5 hours, 4°C) onto nitrocellulose 

(Bio-Rad), and immunoblotted with indicated antibodies (overnight 4°C). Antibody binding was 

detected using the ECL kit (Pierce). 
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BrdU, MTT 

To measure cellular proliferation of WT, KO, and KI osteoclast progenitors, we assessed DNA 

synthesis rates using a commercially available BrdU cell proliferation assay (kit #6813, Cell 

Signaling Technologies) and cellular dehydrogenase activity using the MTT assay (Sigma 5655). 

We generated primary osteoclast progenitors from mice of each of the three experimental 

genotypes, WT, KI, and KO (average age 4 months, all female, n = 3 for each genotype) in the 

manner described above. Independent biological replicates were plated in duplicate. After two days 

of culture, also at 37°C, 5% CO2, osteoclast progenitors were treated with fresh conditioning media 

± M-CSF ± RANKL for 24 hours, and then BrdU or MTT, as appropriate, for an additional 4 

hours. In the BrdU assay this was followed by fixation and staining in accordance with 

manufacturer protocols. In the MTT assay, formazan generated by dehydrogenase-mediated 

cleavage of tetrazolium rings was solubilized by 10% SDS in 0.4N HCl. Plates were then read at 

450nm (BrdU) or 600nm (MTT) via standard microplate reader (Modulus microplate reader, 

Turner biosystems). 

 

Detection of superoxide and additional reactive oxygen species (ROS) 

Osteoclast progenitors obtained from KO, WT, and KI mice were generated in 96 well plates as 

noted above. Total superoxide and ROS generated by these cells in response to varying doses of 

M-CSF and RANKL-treatment were measured over a period of days using the Total 

Superoxide/ROS kit from Enzo Lifesciences, in accordance with manufacturer instructions (ENZ-

51010, Enzo). Measurements were made and recorded using appropriate fluorescent filters using a 

fluorescent-capable microplate reader (Modulus microplate reader, Turner Biosystems).  
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4.3 Results 

p62 does not alter expression of key mediators in the RANK-NFκB signaling pathway 

First, we sought to test whether p62 was truly dispensable for RANKL-mediated NFκB signaling. 

We accomplished this by looking for alterations in the expression and binding patterns of key 

intermediaries in the RANK-NFκB signaling cascade via temporally prescribed RANKL 

stimulation of primary osteoclast progenitor cultures (of non-adherent bone marrow cells obtained 

from KO, WT, and KI mice) followed by lysis and immunoblot or Co-IP. Here we observed that 

neither ablation nor P394L mutation of p62 altered expression levels of RANK, TRAF6, IKKβ, or 

IKKγ (Figures 4.1, 4.2, 4.4), and when adjusting for differences in protein loading, binding 

between TRAF6 and p62 (Figure 4.3). Additionally, TRAF6-binding to RANK, polyubiquitin, and 

CYLD appeared to be unaltered by p62 status (data not shown). Notably, the downstream target of 

the signaling complex, IκB, followed the expected pattern of rapid degradation in response to 

RANKL – decreased expression at 5 minutes of treatment, maximal degradation at 15 minutes – 

before returning to basal levels within the hour, without regard to p62 (Figure 4.5). Furthermore, 

p65, the mediator inhibited by IκB appears within the nuclear fraction in each of the three 

genotypes in a roughly coordinated manner after 5 minutes of RANKL induction (Figure 4.6) and 

may be free to mediate the induction of key genes as identified by the upstream regulator analysis 

(Figures 3.16). To summarize, then, western blot and co-immunoprecipitation experiments suggest 

that neither abrogation nor mutation of p62 appreciably alter the expression, protein-protein 

interaction, or downstream function of key NFκB signaling mediators, while gene expression 

profiling paired with upstream regulator analysis suggests that p65 (RelA) is activated after 8 hours 

of RANKL-treatment. Taken together, these results suggest that p62 is dispensable for NFκB 

signaling during early osteoclastogenesis. 
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Figure 4.1. RANK up-regulation is unaffected by p62 status. Bone marrow derived progenitors obtained from p62 –/– (KO), wildtype (WT), and 
p62 P394L (KI) mice were primed with M-CSF for two days then cultured in the presence or absence of 100 ng/mL RANKL for the time periods 
shown, prior to processing and blotting with the antibodies as shown. Data represent results obtained in at least three independent experiments. 
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Figure 4.2. TRAF6 expression is unaffected by p62 status. Bone marrow derived progenitors obtained from p62 –/– (KO), wildtype (WT), and p62 
P394L (KI) mice were primed with M-CSF for two days then cultured in the presence or absence of 100 ng/mL RANKL for the time periods shown, 
prior to processing and blotting with the antibodies as shown. Data represent results obtained in at least three independent experiments.
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Figure 4.3. PDB-associated UBA-domain mutation does not alter p62 binding to TRAF6. Bone marrow derived progenitors obtained from p62 –
/– (KO), wildtype (WT), and p62 P394L (KI) mice were primed with M-CSF for two days then cultured in the presence or absence of 100 ng/mL 
RANKL for the time periods shown, prior to processing and blotting with the antibodies as shown. Data represent results obtained in at least two 
independent experiments. 
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Figure 4.4. Expression levels of mediators downstream of TRAF6 in the NFκB pathway are not affected by p62 status. Bone marrow derived 

progenitors obtained from p62 –/– (KO), wildtype (WT), and p62 P394L (KI) mice were primed with M-CSF for two days then cultured in the presence 
or absence of 100 ng/mL RANKL for the time periods shown, prior to processing and blotting with the antibodies as shown. Data represent results 
obtained in at least three independent experiments. 
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Figure 4.5. p62 is dispensable for RANKL-mediated IκB degradation. Bone marrow derived progenitors obtained from p62 –/– (KO), wildtype 
(WT), and p62 P394L (KI) mice were primed with M-CSF for two days then cultured in the presence or absence of 100 ng/mL RANKL for the time 
periods shown, prior to processing and blotting with the antibodies as shown. Data represent results obtained in at least three independent 
experiments. 
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Figure 4.6. p62 is dispensable for RANKL-mediated p65 (RelA) nuclear translocation. Bone marrow derived progenitors obtained from p62 –/– 
(KO), wildtype (WT), and p62 P394L (KI) mice were primed with M-CSF for two days then cultured in the presence or absence of 100 ng/mL RANKL 
for the time periods shown, prior to processing and blotting with the antibodies as shown. Data represent results obtained in one preliminary 
experiment. 
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p62 regulates DNA synthesis but not viability or early osteoclast differentiation in response to 

M-CSF and RANKL 

In previous sections, both gene set enrichment analysis and upstream regulator analysis suggested 

that the absence of p62 in RANKL-treated osteoclast progenitors might be associated with 

impaired proliferation. Traditionally, in vitro cellular proliferation has been determined by 

counting cells directly or performing clonogenic assays, which are time-consuming and impractical 

for evaluating large numbers of samples. In the present experiment, we have made use of two more 

common techniques, non-radioactive measurement of DNA synthesis (BrdU assay) and metabolic 

activity and viability (MTT assay). 

The former relies on the observation that cellular proliferation requires the replication of cellular 

DNA. 5-bromo-2`-deoxyuridine (BrdU) is a pyrimidine analogue that is incorporated into the 

DNA of proliferating cells in place of thymidine. Subsequent immunodetection of BrdU using 

monoclonal antibodies allows labeling of cells in the S phase of the cell cycle, and thereby 

provides information about DNA synthesis directly, and cellular proliferation indirectly. To this 

end, we cultured non-adherent bone marrow cells obtained from the long bones of 2 to 4-month old 

KO, WT, and KI animals, treated them with 20 ng/mL of M-CSF for two days to generate 

osteoclast progenitors, then exposed the cells to various concentrations of M-CSF and RANKL for 

24 hours and treated them with BrdU in accordance with manufacturer instructions. We observed 

that DNA synthesis increased significantly with M-CSF, consistent with what is known about M-

CSF function in this cell type (Arai et al., 1999), independent of p62 status (Figure 4.7). RANKL 

treatment did not alter this increase in DNA synthesis except in KO cells, where there was a 

statistically significant, dose-dependent decrease in DNA synthesis, and presumably cellular 

proliferation (Figure 4.7). 
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Figure 4.7. Quantification of DNA synthesis via BrdU 
incorporation in KO, WT, and KI osteoclast progenitors.  
 
Bone marrow cells were obtained from 4-month old KO, WT, and 
KI animals, treated with 20 ng/mL of M-CSF for two days to 
generate osteoclast progenitors, exposed to various 
concentrations of M-CSF and RANKL for 24 hours, then treated 
with BrdU (n = 3, each genotype). Note that DNA synthesis 
increases significantly with M-CSF in all three genotypes, but is 
unaffected by RANKL treatment, except in the KO genetic 
background. * p<0.02, **p<0.001, ***p<0.0001 
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We next sought to assess cellular viability with the MTT assay, in which the tetrazolium salt 

Thiazolyl Blue Tetrazolium Blue (MTT) is metabolized in live cells to form a colored reaction 

product that is detectable by standard ELISA microplate reader. Indeed, this assay afforded us the 

dual opportunity to assess whether mitochondrial function was impaired, as suggested by the 

previous gene enrichment results, as an indirect measure of cellular viability. As before, we 

observed a dramatic increase in metabolic activity that was M-CSF-dependent, but in this instance 

p62-and RANKL-independent (Figure 4.8). 
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Figure 4.8. Quantification of cellular viability via the MTT assay in KO, WT, and KI osteoclast 
progenitors.  
 
Bone marrow cells were obtained from 2-month old KO, WT, and KI animals, treated with 20 ng/mL of 
M-CSF for two days to generate osteoclast progenitors, exposed to various concentrations of M-CSF 
and RANKL for 24 hours (top panel) or 48 hours (bottom panel), then treated with MTT (n = 3). 
Metabolic activity increases significantly with M-CSF in all three genotypes, but is unaffected by 
RANKL treatment at 24 and 48 hours. ***p<0.0001 
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Next we sought to clarify whether the ablation or PDB-associated mutation of p62 played a role in 

the expression of two early osteoclast markers – the M-CSF receptor (CSF-1R), and receptor 

activator of NFκB (RANK). Data from the previous chapter suggested that RANK levels may have 

been diminished at the level of transcription in osteoclast progenitors obtained from mutants (both 

p62 KOs and KIs) compared to WT (Figure 3.10b), however Western blot data in the present 

chapter suggested that there were no obvious deficiencies in RANK protein expression in cells 

from all three genotypes (Figure 4.1). Still, we reasoned that decreased or delayed cell-surface 

expression of either key mediator, M-CSF receptor or RANK, may account for differences we 

observed proliferation and RNAKL-mediated osteoclastogenesis. Moreover, our upstream 

regulator suggested that all precursors may well have differentiated apart from the lymphoid 

lineages (Figure 3.16), but do not predict whether we might expect parallel increases in early 

osteoclast differentiation markers. For example, if these receptors were expressed robustly in WT 

and KI cells, but not in KO cells, we might reasonably assume that p62’s role in osteoclastogenesis 

is direct, acting fairly early or upstream in the signaling cascade, and that alteration of this protein 

alters the nature of the progenitors. To these ends, we cultured non-adherent bone marrow cells, as 

before, treated them with 20 ng/mL of M-CSF for two days to generate osteoclast progenitors, then 

exposed them to 20 ng/mL of M-CSF and 100 ng/mL RANKL over 48 hours, fixing and staining 

cells for the expression of CSF-1R and RANK for flow cytometry analysis at time points, 0, 12 

hours, 24 hours, and 48 hours post treatment (Figures 4.9a, 4.9b, 4.9c). Interestingly, all cell types 

expressed CSF-1R at fairly high levels initially, and were double positive for CSF-1R and RANK 

in proportions that, by the end of the experiment, were p62-independent. Taken together, these 

experiments suggest that p62 plays an important role in DNA synthesis and cell cycle progression, 

but does not alter early viability or directly mediate early osteoclast differentiation. 
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Figure 4.9a. Osteoclast progenitors are M-CSF receptor+, RANK+ during early osteoclast 
differentiation, independent of p62 status.  

Bone marrow cells were obtained from 2-month old KO, WT, and KI animals, treated with 20 ng/mL of M-
CSF for two days to generate osteoclast progenitors, exposed to 20 ng/mL of M-CSF and 100 ng/mL 
RANKL for 48 hours, then fixed and stained for the expression of receptor activator of NFκB (RANK) and 
CSF-1R, the receptor for M-CSF, via flow cytometry. Data represent results obtained in at least two 
independent experiments. 
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Figure 4.9b. M-CSF receptor expression increases during early osteoclast differentiation in a p62-independent manner.  
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Figure 4.9c. RANK expression increases during early osteoclast differentiation in a p62-independent manner.
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p62 mediates RANKL-induced production of reactive oxygen species (ROS) 

The final experiment we conducted sought to test whether RANKL-treated KO cells exhibited an 

impaired NRF2-mediated oxidative stress response. We began by testing whether NRF2 could be 

located in nuclear fractions of osteoclast progenitors treated with RANKL. In preliminary testing, 

we found levels of NRF2 via Western blot that were essentially indistinguishable between KO, 

WT, and KI nuclear fractions (data not shown). Next, we tested whether ROS production varied by 

p62 status in osteoclast progenitors treated with RANKL, using previously published methods 

(Yang et al., 2011). We found that, in our hands, the kit did not detect dramatic increases RANKL-

mediated ROS production over short durations (Figure 4.10a), as has been previously shown using 

fluorescence microscopy techniques (Lee et al., 2005). Nonetheless, a significant decrease in total 

ROS production was observed among KO cells relative to WT and KI cells. Moreover, a dramatic, 

dose-dependent up-regulation in RANKL-mediated ROS production was observed over a period of 

hours to days, particularly in WT and KI cells, a finding also consistent with previously published 

results (Kim et al., 2010). Interestingly, up-regulation of ROS also occurred in KO cells, but in a 

manner that was diminished relative to that in WT and KI cells, particularly at the 6 hour time 

point (Figure 4.10b). This suggests that the NRF2 mediated stress response may be impaired in KO 

cells, in part, because maximal levels of ROS production are not reached when they are stimulated 

by RANKL. 
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Figure 4.10a. Quantification of total ROS produced in 
response to RANKL stimulation in KO, WT, and KI 
osteoclast progenitors over immediate timepoints. 
 
Bone marrow cells were obtained from 4-month old KO, 
WT, and KI animals, treated with 20 ng/mL of M-CSF for 
two days to generate osteoclast progenitors, incubated 
with ROS detection mix, then treated with various 
concentrations ± 20 ng/mL M-CSF and various doses of 
RANKL. Immediate measurements were made and 
reported as a percentage of the initial WT, M-CSF reading. 
Subsequent measures were taken at 10 and 20 minutes. 
Means ± SEM are reported for two independent 
experiments. RANKL concentrations of 25 ng/mL (+), 50 
ng/mL (++), and 100 ng/mL were used (++++).   
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Figure 4.10b. Quantification of total ROS produced in 
response to RANKL stimulation in KO, WT, and KI 
osteoclast progenitors over extended timepoints. 
 
Bone marrow cells were obtained from 4-month old KO, 
WT, and KI animals, treated with 20 ng/mL of M-CSF for 
two days to generate osteoclast progenitors, incubated 
with ROS detection mix, then treated with various 
concentrations ± 20 ng/mL M-CSF and various doses of 
RANKL. Immediate measurements were made and 
reported as a percentage of the initial WT, M-CSF reading. 
Subsequent measures were taken at 6, 24, and 48 hours. 
Means ± SEM are reported for two independent 
experiments. RANKL concentrations of 25 ng/mL (+), 50 
ng/mL (++), and 100 ng/mL were used (++++).   
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4.4 Discussion 

Experiments in this chapter revealed that key mediators in the RANK-NFκB signaling pathway 

including RANK, TRAF6, IKKβ, and IKKγ were expressed at levels that were p62-independent, 

that RANK-TRAF6 and RANK-p62 binding did not differ appreciably with p62 status in 

preliminary pull-down experiments, and that the kinetics of IκB degradation did not appreciably 

change in the absence of p62 or presence of PDB-associated mutant p62 during early 

osteoclastogenesis. How can we understand this set of results in light of the phenotypes we 

described in the previous chapter and what has been previously published in the literature? On the 

one hand, genetic abrogation of p62 does not lead to a detectable phenotype in the absence of 

external stimuli, a result that was previously published for 2 month old mice (Durán et al., 2004), 

and confirmed in the present project, in year-old mice about which there had been some 

uncertainty. Yet genetic knock-out mouse models for any of the following mediators: RANKL, 

RANK, NFκB1 and NFκB2, or TRAF6, result in a severe, osteoclast-poor, osteopetrotic phenotype 

under similar conditions. If p62 were a key mediator in this pathway, we might have expected a 

similar phenotype. On the other hand, as noted earlier, there is some evidence from in vitro studies 

that an intact p62 UBA domain is required for the proper function of CYLD, a TRAF6 de-

ubiquitinase and feedback inhibitor of NFκB signaling. Yet, when CYLD is knocked-out, mice 

exhibit severe osteoporosis, a phenotype that neither KO nor KI mutant mice demonstrate. Taken 

together, these findings suggest that p62 may not play a role in modulating the effects of the 

RANK-NFκB in a biologically relevant manner, or that its absence or genetic alteration is 

countered by the presence of some yet-unidentified factor. That said, the inability of KO mice or 

cells to mount an appropriate osteoclastogenic response to cytokine stimulation in vivo (whether it 

is indirect such as via PTHrP or direct via TNF-α) or in vitro (with RANKL), is unmistakable. As 
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such, we next turned to alternative hypotheses generated by our gene expression profiling 

experiments. 

Specifically, in chapter three we observed that a constellation of regulators of cellular proliferation 

were predicted to be inhibited in KO cells relative to their WT and KI counterparts (Figures 3.16 

and 3.17) and that a bevy of genes, including aurora kinases, E2F transcription factors, cyclins, and 

cyclin dependent kinases associated with cell cycle progression, were uniquely down-regulated in 

RANKL-treated KO cells (Figure 3.12b). We tested these results functionally with BrdU and MTT 

assays for proliferation and viability, respectively. Interestingly, we confirmed that proliferation 

was diminished in a RANKL dose-dependent manner in KO, but not WT or KI, cells, while cell 

viability was p62-independent. Possible sources of error must be acknowledged – it has been 

reported, for example, that over 50% of the MTT dye that penetrates the cell membrane can be 

reduced by non-mitochondrial, cytosolic and microsomal enzymes (Jaszcyszyn and Gasiorowski, 

2008), that reactive oxygen species (ROS) such as superoxide can efficiently reduce tetrazolium 

salts, and that the simultaneous use of ROS-inducers with the MTT or XTT assays leads to 

inaccurate predictions about cell toxicity and overestimated cell viability (Wang and Wickliffe, 

2011). Yet, the fact that these observations are broadly consistent with the previously published 

findings that absence of p62 facilitates a slower exit of cells from mitosis (Linares et al., 2011) but 

also disrupts mitotic catastrophe, a p53-mediated oncosuppressive cell death cascade (Bui and 

Shin, 2011), strengthen our confidence in these results. 

Our final set of experiments were motivated by the prediction, generated in chapter three, that 

activation of antioxidant NRF2 signaling cascade may be impaired in the absence of p62. We 

tested this indirectly by measuring ROS production in response to RANKL in cells of each 
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genotype, reasoning that in the absence of p62, the antioxidant response would be muted, and ROS 

would be elevated, especially on the scale of hours to days, in KO cells compared with WT and KI 

cells. In our preliminary data, the trend was consistent with diminished ROS production in KO 

cells compared to WT and KI cells, contrary to our expectation. How can we make sense of these 

results? As noted earlier, investigators have shown that p62 localizes within mitochondria and 

forms protein complexes with several oxidation-prone proteins (including components of the 

electron transport chain, chaperone molecules, and redox enzymes) to support stable electron 

transport, and that p62-deficient mitochondria exhibit impaired electron transport, which is 

partially restored by in vitro delivery of p62 (Lee and Shin, 2011). Another group recently 

confirmed these results, demonstrating that p62 is localized to mitochondria in basal, non-stressed 

conditions, and that p62 deficiency disrupts mitochondrial morphology, function (e.g. ATP 

production), and mitochondrial genome stability (Seibenhener et al., 2013). Furthermore, it has 

been previously shown that RANKL stimulation of osteoclast progenitors transiently increases 

intracellular ROS (Lee et al., 2005), while application of the antioxidant N-acetylcysteine (NAC) 

or suppression of the activity of Nox (an enzyme that catalyzes ROS production) inhibit the 

responses of progenitors to RANKL and osteoclast differentiation (Lee et al., 2005). Because ROS 

are produced endogenously as by-products of the incomplete reduction of cellular oxygen and p62-

/- mitochondria exhibit impaired electron transport, it stands to reason that such mitochondria may 

also produce diminished ROS in response to RANKL stimulation, leading to deficient 

osteoclastogenesis (and diminished ROS production would also presumably diminish the NRF2-

mediated antioxidant response, hence our findings in chapter three). One way to test this 

hypothesis would be to be culture osteoclast progenitors from WT and KO mice in the presence of 

NAC and H2O2, respectively, and characterize the structural and functional responses.  
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Before concluding, we must acknowledge some of the experimental challenges and limitations to 

the work chronicled in this chapter. First, conducting experiments where endogenous proteins and 

protein-protein interactions are probed from primary cultures is an inherently difficult task. 

Biological heterogeneity, the increased time and cost involved in simultaneously generating cell 

cultures from mice of three different genotypes for each experiment, and the difficulty in 

identifying appropriate antibodies for endogenous proteins were significant hurdles to overcome to 

increase the biological relevance of our studies. Consequently, some interactions appeared to be 

somewhat non-specific and would benefit from repeat experimentation. Second, time and financial 

constraints limited the number of hypotheses generated in chapter three that could be tested here. 

To this end, while an additional external validation of differentially expressed genes has already 

been conducted (the parameters of which are outlined in the following chapter), additional 

hypothesis testing may yet reveal additional, novel therapeutic targets for Paget’s disease 

specifically, and bone disease characterized by overly exuberant or dysregulated 

osteoclastogenesis, such as multiple myeloma and cancer metastasis, more generally. 

Despite these limitations, we have tested a significant subset of hypotheses developed in chapters 

two and three. We have provided additional evidence that p62 may mediate early 

osteoclastogenesis not by regulation of the RANK-NFκB signaling pathway, alteration of cellular 

differentiation, or disruption of viability, but by mediating proliferation and the production of 

reactive oxygen species. Taken together these experiments provide a novel framework to advance 

our understanding of p62 function in osteoclastogenesis and the pathophysiology of Paget’s 

disease of bone, which we discuss in the final chapter. 
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SUMMARY AND CONCLUDING REMARKS 

 

This dissertation was undertaken to elucidate the role played by the multifunctional adaptor protein 

p62 in the cellular physiology of osteoclasts in health and disease. We began with a broad 

structural and functional characterization of congenic mice in which the gene encoding p62 was 

left intact (wildtype or WT), genetically knocked-out (KO), or altered to produce the murine 

equivalent of a common mutant associated with Paget’s disease of bone, p62 P394L (KI). Next, we 

assessed the signaling changes underlying differential osteoclastogenesis in progenitors obtained 

from these mice using gene expression profiling via DNA microarray. Finally, we tested 

predictions about specific signaling pathways culled from the microarray results, confirming a 

subset of them, and in the process, altered our view of the role p62 plays in osteoclast formation. 

In the original study of p62-/- mice, investigators found that the absence of p62 did not affect 

skeletal architecture under basal conditions in 6 to 8 week old mice, but impaired osteoclast 

formation in response to induction by PTHrP and RANKL, in vivo and in vitro, respectively 

(Durán et al., 2004). To account for these and other findings, they proposed a model in which p62 

forms a complex with TRAF6 to enhance NFκB signaling, up-regulate NFATc1, the master 

transcriptional regulator of osteoclastogenesis, and ultimately form new osteoclasts. 
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Despite the fact that knock-out mouse models of key RANK-NFκB signaling mediators, including 

RANKL, RANK, and TRAF6, develop osteopetrosis under basal conditions, and p62-/- mice do 

not, this model took hold, and has gained broad acceptance in the literature through the years. Of 

note, in a later paper, this group demonstrated that KO mice develop mature-onset obesity, and 

suggested, but never experimentally demonstrated, that such mice also exhibit increased bone 

mineral density as they age, implying a possible aging-induced osteopetrotic phenotype (Rodriguez 

et al., 2006). In this study, we confirmed that p62-/- mice and cells demonstrate impaired 

osteoclastogenesis in response to cytokine stimulation and that genetic ablation of p62 results in 

mature-onset obesity, but found no statistically appreciable differences in skeletal architecture in 

KO mice compared to WT controls at one year of age. That we observed the obesity phenotype, 

but did not observe any significant changes to skeletal architecture suggested to us that either p62 

plays a minor role in normal bone homeostasis or that a sufficient number of compensatory 

pathways are active to mask the effects of its loss. In contrast, KI mice exhibited an osteopenic 

phenotype (i.e. increased osteoclastogenesis) under basal conditions, a finding that differed from 

previously reported results (Hiruma et al., 2008; Daroszewska et al., 2011). Though this may be 

attributable to strain-dependence, we suspect that this discrepancy is better accounted for by the 

fact that we characterized older and greater numbers of mice in the present study compared to 

previous ones. Taken together with the fact that cytokine-induced osteoclastogenesis was also 

enhanced in KI mice and cells relative to WT controls, these data indicated to us that PDB-

associated mutations result in a true physiologic gain of osteoclast function.  

These findings prompted us to re-evaluate p62’s accepted role in osteoclastogenesis and probe it in 

an unbiased fashion using gene expression profiling. Importantly, we generated several novel 

hypotheses, which include: (a) that p62 may be dispensable for RANKL-mediated NFκB signaling 
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and early differentiation of hematopoietic precursors toward the monocyte/macrophage lineage, (b) 

that ablation of p62 may impair cellular proliferation, cell cycle progression, mitochondrial 

integrity, or the NRF2-mediated oxidative stress response, among other signaling pathways, and 

thereby inhibit osteoclastogenesis, and (c) that P394L mutation of p62 may be associated with an 

increase in the unfolded protein stress response, increased CD38 signaling and IL-6 production, or 

decreased BCL6 signaling and thereby enhance osteoclastogenesis. We then tested a subset of 

these hypotheses. First, we observed that key mediators in RANK signaling were expressed and 

co-precipitated at levels that were p62-independent and, that, moreover, the kinetics of IκB 

degradation, the rate-limiting step in NFκB activation, did not change in the absence of p62 or 

presence of mutant p62 during early osteoclastogenesis, casting further doubt on the putative role 

ascribed to p62 in the RANK-NFκB signaling pathway. Next, we found that the absence of p62 

was associated with diminished cellular proliferation and reactive oxygen species production in a 

RANKL dose-dependent manner, but did not alter cellular viability, while PDB-associated 

mutation of p62 increased ROS production alone.  

Taken together, our results suggest that a new narrative of p62’s place in osteoclastogenesis may 

be in order, favoring its role in maintaining cellular homeostasis through selective autophagy, the 

maintenance of mitochondrial integrity, ROS production, and the NRF2-mediated antioxidant 

response, above its putative role in RANK-NFκB signaling. A natural extension to Paget’s disease 

of bone follows. We propose that p62 P394L, and other UBA-domain mutants may alter the ability 

of p62 to sequester ubiquitinated proteins that are to be degraded via autophagy or the 26S 

proteasome, increasing the cellular burden of misfolded proteins. We speculate that this may 

increase ER stress, trigger a robust unfolded protein response, possibly mediated by XBP1, which 

may lead to increased levels of endogenous inflammatory mediators that then may increase the 
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general osteoclastogenic milieu of the bone microenvironment. How we may reconcile these 

results with the body of literature discussing viral contributions to PDB is beyond the scope of the 

present work, but we may note that a recent publication suggests that the attenuated measles virus-

Edmonston strain (used in oncolytic virotherapy trials) triggers p62-mediated mitophagy (Xia et 

al., 2014). In this vein, we speculate that true infection with measles virus may act in a similar 

fashion to alter normal cellular homeostasis. 

It must be acknowledged that several further experiments should be conducted to increase our 

confidence in these findings and help confirm our hypotheses. In fact, an additional validation 

experiment where samples of WT, KO, and KI bone-marrow derived osteoclast progenitors were 

treated with RANKL or vehicle at 0, 8, 24, and 48 hours has already been conducted. Moreover,  

RNA samples have been purified and assessed for quality, and probes for quantitative RT-PCR to 

evaluate differential regulation of key NFκB signaling mediators and targets (RANK, TRAF6, 

CYLD, NFATc1, RelB, NFκB1), NRF2 targets (SRXN1, SOD2, ICAM-1), and highly expressed 

genes from our microarray data (DUSP6, FOS, MAPK3) have already been purchased and 

obtained. Additional targets to consider prior to final experimentation include NQO-1 and NQO-2, 

critical targets of NRF2 known to play an important role in the maintenance of mitochondrial 

integrity. Moreover, additional external validation of mammalian target of rapamycin (mTOR) 

signaling, protein kinase C delta (PRKCD) function, and microRNA-124 turnover are warranted in 

KO and WT cells, while methods for measuring the unfolded stress response have been established 

in mammalian cell system (Oslowski and Urano, 2011), and should also be explored along with 

CD38, IL-6, and BCL6 signaling pathways in p62 P394L cells. Such studies may extend our 

understanding of normal osteoclastogenesis and provide further novel targets for intervention in 

bone disease. 
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APPENDIX A  

INHIBITION OF BCL6 SIGNALING IS PREDICTED IN KI CELLS ALONE 
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APPENDIX B  

ACTIVATION OF XBP1 SIGNALING IS PREDICTED IN KI CELLS ALONE 
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APPENDIX C  

ACTIVATION OF CD38 SIGNALING IS PREDICTED IN KI CELLS ALONE 
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APPENDIX D  

ACTIVATION OF MTOR SIGNALING IS PREDICTED IN WT (SHOWN) AND KI, 

BUT NOT KO, CELLS 
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APPENDIX E  

ACTIVATION OF NFE2L2 SIGNALING IS PREDICTED IN WT (SHOWN) AND KI, 

BUT NOT KO, CELLS 
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APPENDIX F  

INHIBITION OF EUKARYOTIC TRANSLATION INITIATION FACTOR 4E 

(EIF4E) FUNCTION IS PREDICTED IN KO CELLS ALONE 
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APPENDIX G  

INHIBITION OF E2F1 FUNCTION IS PREDICTED IN KO CELLS ALONE 
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APPENDIX H  

INHIBITION OF MIRNA-124 IS PREDICTED IN WT (SHOWN) AND KI, BUT NOT 

KO, CELLS 
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APPENDIX I  

INHIBITION OF MIRNA-16-5 IS PREDICTED IN WT (SHOWN) AND KI, BUT 

NOT KO, CELLS 
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APPENDIX J  

INHIBITION OF LET-7 FUNCTION IS PREDICTED IN KO CELLS ALONE 
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